Convex Regularization of Discrete-Valued Inverse Problems

被引:3
作者
Clason, Christian [1 ]
Thi Bich Tram Do [1 ]
机构
[1] Univ Duisburg Essen, Fac Math, D-45117 Essen, Germany
来源
NEW TRENDS IN PARAMETER IDENTIFICATION FOR MATHEMATICAL MODELS | 2018年
关键词
BANG-BANG-PRINCIPLE; CONVERGENCE-RATES; BANACH-SPACES; MUMFORD;
D O I
10.1007/978-3-319-70824-9_2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This work is concerned with linear inverse problems where a distributed parameter is known a priori to only take on values from a given discrete set. This property can be promoted in Tikhonov regularization with the aid of a suitable convex but nondifferentiable regularization term. This allows applying standard approaches to show well-posedness and convergence rates in Bregman distance. Using the specific properties of the regularization term, it can be shown that convergence (albeit without rates) actually holds pointwise. Furthermore, the resulting Tikhonov functional can be minimized efficiently using a semi-smooth Newton method. Numerical examples illustrate the properties of the regularization term and the numerical solution.
引用
收藏
页码:31 / 51
页数:21
相关论文
共 29 条
[11]   Multi-bang control of elliptic systems [J].
Clason, Christian ;
Kunisch, Karl .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2014, 31 (06) :1109-1130
[12]  
Ekeland I., 1999, CLASSICS APPL MATH, V28
[13]   Convergence rates in constrained Tikhonov regularization: equivalence of projected source conditions and variational inequalities [J].
Flemming, Jens ;
Hofmann, Bernd .
INVERSE PROBLEMS, 2011, 27 (08)
[14]  
Goldluecke B, 2010, LECT NOTES COMPUT SC, V6315, P225, DOI 10.1007/978-3-642-15555-0_17
[15]   A convergence rates result for Tikhonov regularization in Banach spaces with non-smooth operators [J].
Hofmann, B. ;
Kaltenbacher, B. ;
Poeschl, C. ;
Scherzer, O. .
INVERSE PROBLEMS, 2007, 23 (03) :987-1010
[16]   Exact optimization for Markov random fields with convex priors [J].
Ishikawa, H .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2003, 25 (10) :1333-1336
[17]  
Ito K., 2014, SERIES APPL MATH, V22, DOI [10.1142/9789814596206_0001, DOI 10.1142/9789814596206_0001]
[18]  
Ito K, 2008, ADV DES CONTROL, P1
[19]   Continuous Multiclass Labeling Approaches and Algorithms [J].
Lellmann, J. ;
Schnoerr, C. .
SIAM JOURNAL ON IMAGING SCIENCES, 2011, 4 (04) :1049-1096
[20]   Regularization of ill-posed problems in Banach spaces: convergence rates [J].
Resmerita, E .
INVERSE PROBLEMS, 2005, 21 (04) :1303-1314