Convex Regularization of Discrete-Valued Inverse Problems

被引:3
作者
Clason, Christian [1 ]
Thi Bich Tram Do [1 ]
机构
[1] Univ Duisburg Essen, Fac Math, D-45117 Essen, Germany
来源
NEW TRENDS IN PARAMETER IDENTIFICATION FOR MATHEMATICAL MODELS | 2018年
关键词
BANG-BANG-PRINCIPLE; CONVERGENCE-RATES; BANACH-SPACES; MUMFORD;
D O I
10.1007/978-3-319-70824-9_2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This work is concerned with linear inverse problems where a distributed parameter is known a priori to only take on values from a given discrete set. This property can be promoted in Tikhonov regularization with the aid of a suitable convex but nondifferentiable regularization term. This allows applying standard approaches to show well-posedness and convergence rates in Bregman distance. Using the specific properties of the regularization term, it can be shown that convergence (albeit without rates) actually holds pointwise. Furthermore, the resulting Tikhonov functional can be minimized efficiently using a semi-smooth Newton method. Numerical examples illustrate the properties of the regularization term and the numerical solution.
引用
收藏
页码:31 / 51
页数:21
相关论文
共 29 条
[1]  
Bae E., 2009, Graph cut optimization for the piecewise constant level set method applied to multiphase image segmentation, P1, DOI DOI 10.1007/978-3-642-02256-2_1
[2]  
Barbu V., 2012, Springer Monogr. Math., DOI DOI 10.1007/978-94-007-2247-7
[3]  
Bauschke HH, 2011, CMS BOOKS MATH, P1, DOI 10.1007/978-1-4419-9467-7
[4]   Optimality conditions and generalized bang-bang principle for a state-constrained semilinear parabolic problem [J].
Bergounioux, M ;
Troltzsch, F .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1996, 17 (5-6) :517-536
[5]  
BREGMAN M., 1967, USSR Comput Math Math Phys, V7, P200, DOI [10.1016/0041-5553(67)90040-7, DOI 10.1016/0041-5553(67)90040-7]
[6]   Convergence rates of convex variational regularization [J].
Burger, M ;
Osher, S .
INVERSE PROBLEMS, 2004, 20 (05) :1411-1421
[7]   A Two-Stage Image Segmentation Method Using a Convex Variant of the Mumford-Shah Model and Thresholding [J].
Cai, Xiaohao ;
Chan, Raymond ;
Zeng, Tieyong .
SIAM JOURNAL ON IMAGING SCIENCES, 2013, 6 (01) :368-390
[8]  
Clason C., 2016, 161107853 ARXIV
[9]   A CONVEX ANALYSIS APPROACH TO MULTI-MATERIAL TOPOLOGY OPTIMIZATION [J].
Clason, Christian ;
Kunisch, Karl .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2016, 50 (06) :1917-1936
[10]   A CONVEX ANALYSIS APPROACH TO OPTIMAL CONTROLS WITH SWITCHING STRUCTURE FOR PARTIAL DIFFERENTIAL EQUATIONS [J].
Clason, Christian ;
Ito, Kazufumi ;
Kunisch, Karl .
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2016, 22 (02) :581-609