A Wideband Gain-Enhancement Technique for Distributed Amplifiers

被引:25
作者
Nguyen, Nguyen L. K. [1 ]
Killeen, Natalie S. [1 ,2 ]
Nguyen, Duy P. [1 ]
Stameroff, Alexander N. [2 ]
Anh-Vu Pham [1 ]
机构
[1] Univ Calif Davis, Dept Elect & Comp Engn, Davis, CA 95616 USA
[2] Keysight Technol, Santa Rosa, CA 95403 USA
关键词
Bandpass; distributed amplifier (DA); feedback; gain boosting; heterojunction-bipolar-transistor (HBT); indium-phosphide (InP); millimeter-wave (mmW); monolithic microwave/mmW integrated circuit (MMIC); 6G; wideband; MATRIX AMPLIFIER; POWER-AMPLIFIER; BANDWIDTH; DESIGN;
D O I
10.1109/TMTT.2020.3006165
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this article, a new bandpass distributed amplifier (DA) using a wideband gain-boosting technique is presented. In particular, a feedback network, including a series inductor and a shunt capacitor, is used to generate two peaks at the lower and upper cutoff frequencies of the amplifier's bandpass response. This technique provides a gain enhancement over a wide bandwidth without sacrificing the upper cutoff frequency. A detailed analysis of the two frequencies peaking effect is carried out to support the theory. To verify the concept, a conventional and a gain-enhanced DA are fabricated in an indium-phosphide (InP) heterojunction bipolar transistor (HBT) process. The gain-enhanced DA exhibits a measured gain of 10.5 dB with a 4-dB gain improvement compared with the conventional one, covering a 3-dB bandwidth from 60 to 145 GHz. The maximum saturated (P-sat) is 20.9 dBm at 75 GHz with the measured 1-dB compression power (P-1dB) of 18.5 dBm. The dc power consumption is 440 mW, and the chip size is 1.6 mm x 0.6 mm. To the best of our knowledge, the proposed DA achieves the highest gain boosting over a broad bandwidth compared with the published works.
引用
收藏
页码:3697 / 3708
页数:12
相关论文
共 54 条
[1]   112-GHz, 157-GHz, and 180-GHz InP HEMT traveling-wave amplifiers [J].
Agarwal, B ;
Schmitz, AE ;
Brown, JJ ;
Matloubian, M ;
Case, MG ;
Le, M ;
Lui, M ;
Rodwell, MJW .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 1998, 46 (12) :2553-2559
[2]  
Arbabian A., 2008, IEEE ISSCC Dig. Tech. Papers, P196, DOI DOI 10.1109/ISSCC.2008.4523124
[3]   CAPACITIVELY COUPLED TRAVELING-WAVE POWER-AMPLIFIER [J].
AYASLI, Y ;
MILLER, SW ;
MOZZI, R ;
HANES, LK .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 1984, 32 (12) :1704-1709
[4]   Analysis of the performance of four-cascaded single-stage distributed amplifiers [J].
Banyamin, BY ;
Berwick, M .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2000, 48 (12) :2657-2663
[5]   MESFET DISTRIBUTED-AMPLIFIER DESIGN GUIDELINES [J].
BEYER, JB ;
PRASAD, SN ;
BECKER, RC ;
NORDMAN, JE ;
HOHENWARTER, GK .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 1984, 32 (03) :268-275
[6]   A Compact 77% Fractional Bandwidth CMOS Band-Pass Distributed Amplifier With Mirror-Symmetric Norton Transforms [J].
Bhagavatula, Venumadhav ;
Taghivand, Mazhareddin ;
Rudell, Jacques Christophe .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2015, 50 (05) :1085-1093
[7]   40-Gb/s high-gain distributed amplifiers with cascaded gain stages in 0.18-μm CMOS [J].
Chien, Jun-Chau ;
Lu, Liang-Hung .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2007, 42 (12) :2715-2725
[8]  
Chien JC, 2013, IEEE MTT S INT MICR
[9]   Analysis and Design of Stacked-FET Millimeter-Wave Power Amplifiers [J].
Dabag, Hayg-Taniel ;
Hanafi, Bassel ;
Golcuk, Fatih ;
Agah, Amir ;
Buckwalter, James F. ;
Asbeck, Peter M. .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2013, 61 (04) :1543-1556
[10]   THz Monolithic Integrated Circuits Using InP High Electron Mobility Transistors [J].
Deal, William ;
Mei, X. B. ;
Leong, Kevin M. K. H. ;
Radisic, Vesna ;
Sarkozy, S. ;
Lai, Richard .
IEEE TRANSACTIONS ON TERAHERTZ SCIENCE AND TECHNOLOGY, 2011, 1 (01) :25-32