An Automated Cirrus Cloud Detection Method for a Ground-Based Cloud Image

被引:43
作者
Yang, Jun [1 ]
Lu, Weitao [1 ]
Ma, Ying [1 ]
Yao, Wen [1 ]
机构
[1] Chinese Acad Meteorol Sci, Inst Atmospher Sounding, Beijing 100081, Peoples R China
基金
中国国家自然科学基金;
关键词
EXTRACTION;
D O I
10.1175/JTECH-D-11-00002.1
中图分类号
P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
Cloud detection is a basic research for achieving cloud-cover state and other cloud characteristics. Because of the influence of sunlight, the brightness of sky background on the ground-based cloud image is usually nonuniform, which increases the difficulty for cirrus cloud detection, and few detection methods perform well for thin cirrus clouds. This paper presents an effective background estimation method to eliminate the influence of variable illumination conditions and proposes a background subtraction adaptive threshold method (BSAT) to detect cirrus clouds in visible images for the small field of view and mixed clear-cloud scenes. The BSAT algorithm consists of red-to-blue band operation, background subtraction, adaptive threshold selection, and binarization. The experimental results show that the BSAT algorithm is robust for all types of cirrus clouds, and the quantitative evaluation results demonstrate that the BSAT algorithm outperforms the fixed threshold (FT) and adaptive threshold (AT) methods in cirrus cloud detection.
引用
收藏
页码:527 / 537
页数:11
相关论文
共 33 条
[1]   Feature extraction from whole-sky ground-based images for cloud-type recognition [J].
Calbo, Josep ;
Sabburg, Jeff .
JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, 2008, 25 (01) :3-14
[2]   Cosmic rays, clouds, and climate [J].
Carslaw, KS ;
Harrison, RG ;
Kirkby, J .
SCIENCE, 2002, 298 (5599) :1732-1737
[3]   Development of a sky imager for cloud cover assessment [J].
Cazorla, A. ;
Olmo, F. J. ;
Alados-Arboledasl, L. .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2008, 25 (01) :29-39
[4]   Satellite retrieved cloud optical thickness sensitive to surface wind speed in the subarctic marine boundary layer [J].
Glantz, Paul .
ENVIRONMENTAL RESEARCH LETTERS, 2010, 5 (03)
[5]  
Gonzalez R. C., 2004, Digital image processing using MATLAB, VSecond
[6]  
HARSHVARDHAN, 1989, J ATMOS SCI, V46, P1922, DOI 10.1175/1520-0469(1989)046<1922:ERBACS>2.0.CO
[7]  
2
[8]   Automatic cloud classification of whole sky images [J].
Heinle, A. ;
Macke, A. ;
Srivastav, A. .
ATMOSPHERIC MEASUREMENT TECHNIQUES, 2010, 3 (03) :557-567
[9]   Cloud Determination of All-Sky Images under Low-Visibility Conditions [J].
Huo, Juan ;
Lu, Daren .
JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, 2009, 26 (10) :2172-2181
[10]  
HUTCHISON KD, 1995, J APPL METEOROL, V34, P1161, DOI 10.1175/1520-0450(1995)034<1161:IDOOTC>2.0.CO