Femtosecond plasmon and photon wave packets excited by a high-energy electron on a metal or dielectric surface

被引:16
作者
Brenny, Benjamin J. M. [1 ]
Polman, Albert [1 ]
Garcia de Abajo, F. Javier [2 ,3 ]
机构
[1] FOM Inst AMOLF, Ctr Nanophoton, Sci Pk 104, NL-1098 XG Amsterdam, Netherlands
[2] Barcelona Inst Sci & Technol, ICFO Inst Ciencies Foton, Castelldefels 08860, Barcelona, Spain
[3] ICREA, Passeig Lluis Companys 23, Barcelona 08010, Spain
基金
欧洲研究理事会;
关键词
TRANSITION RADIATION; THIN-FILMS; LIGHT; CATHODOLUMINESCENCE; SPECTROSCOPY; MICROSCOPE; GENERATION; EMISSION; LOSSES;
D O I
10.1103/PhysRevB.94.155412
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Swift electrons generate coherent transition radiation (TR) when crossing a material surface, as well as surface plasmon polaritons (SPPs) when the material is metallic. We present analytical and numerical calculations that describe the time- and space-dependent electric fields of TR and SPPs induced by 30-300 keV electrons on a Drude metal surface. The generated SPPs form wave packets a few-hundred femtoseconds in duration, depending on the material permittivity. High-frequency components close to the plasmon resonance are strongly damped, causing the wave packets to shift to lower frequencies as they propagate further. TR is emitted to the far field as ultrashort wave packets consisting of just a few optical cycles, with an intensity and angle dependence that is determined by the material permittivity. The excitation reaches its peak amplitude within a few femtoseconds and then drops off strongly for longer times. From a correlation between material permittivity and the calculated emission behavior, we determine qualitative predictions of the TR evolution for any given material. The results presented here provide key insights into the mechanisms enabling swift electrons to serve as nanoscale optical excitation sources.
引用
收藏
页数:11
相关论文
共 47 条
[1]   Light Well: A Tunable Free-Electron Light Source on a Chip [J].
Adamo, G. ;
MacDonald, K. F. ;
Fu, Y. H. ;
Wang, C-M. ;
Tsai, D. P. ;
Garcia de Abajo, F. J. ;
Zheludev, N. I. .
PHYSICAL REVIEW LETTERS, 2009, 103 (11)
[2]  
[Anonymous], 1999, CLASSICAL ELECTRODYN
[3]  
[Anonymous], 1964, HDB MATH FUNCTIONS
[4]   Surface plasmon Fourier optics [J].
Archambault, A. ;
Teperik, T. V. ;
Marquier, F. ;
Greffet, J. J. .
PHYSICAL REVIEW B, 2009, 79 (19)
[5]   Plasmon electron energy-gain spectroscopy [J].
Asenjo-Garcia, A. ;
Garcia de Abajo, F. J. .
NEW JOURNAL OF PHYSICS, 2013, 15
[6]   Hyperspectral imaging of plasmonic nanostructures with nanoscale resolution [J].
Bashevoy, M. V. ;
Jonsson, F. ;
MacDonald, K. F. ;
Chen, Y. ;
Zheludev, N. I. .
OPTICS EXPRESS, 2007, 15 (18) :11313-11320
[7]   Generation of traveling surface plasmon waves by free-electron impact [J].
Bashevoy, M. V. ;
Jonsson, F. ;
Krasavin, A. V. ;
Zheludev, N. I. ;
Chen, Y. ;
Stockman, M. I. .
NANO LETTERS, 2006, 6 (06) :1113-1115
[8]  
Bassani G. F., 1975, Electronic States and Optical Transitions in Solids, V1st
[9]   On representation of electromagnetic radiation in the picture of force lines [J].
Bolotovskii, BM ;
Serov, AV .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 1998, 145 (1-2) :31-39
[10]   Quantifying coherent and incoherent cathodoluminescence in semiconductors and metals [J].
Brenny, B. J. M. ;
Coenen, T. ;
Polman, A. .
JOURNAL OF APPLIED PHYSICS, 2014, 115 (24)