A modified projection method for monotone variational inequalities

被引:11
作者
Noor, MA [1 ]
机构
[1] Dalhousie Univ, Dept Math Stat & Comp Sci, Halifax, NS B3H 3J5, Canada
关键词
variational inequalities; projection method; convergence analysis;
D O I
10.1016/S0893-9659(99)00061-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we suggest and analyze a new projection-type method for solving monotone variational inequalities. Convergence analysis of the method requires only the monotonicity and continuity of the underlying operator. (C) 1999 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:83 / 87
页数:5
相关论文
共 50 条
  • [31] A class of projection-contraction methods applied to monotone variational inequalities
    Verma, RU
    [J]. APPLIED MATHEMATICS LETTERS, 2000, 13 (08) : 55 - 62
  • [32] Modified self-adaptive projection method for solving pseudomonotone variational inequalities
    Yu, Zeng
    Shao, Hu
    Wang, Guodong
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (20) : 8052 - 8060
  • [33] Modified subgradient extragradient algorithms for solving monotone variational inequalities
    Yang, Jun
    Liu, Hongwei
    Liu, Zexian
    [J]. OPTIMIZATION, 2018, 67 (12) : 2247 - 2258
  • [34] A Relaxed Projection Method for Split Variational Inequalities
    He, Hongjin
    Ling, Chen
    Xu, Hong-Kun
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2015, 166 (01) : 213 - 233
  • [35] Convergence analysis of projection method for variational inequalities
    Shehu, Yekini
    Iyiola, Olaniyi S.
    Li, Xiao-Huan
    Dong, Qiao-Li
    [J]. COMPUTATIONAL & APPLIED MATHEMATICS, 2019, 38 (04)
  • [36] A new projection method for a class of variational inequalities
    Dang Van Hieu
    Duong Viet Thong
    [J]. APPLICABLE ANALYSIS, 2019, 98 (13) : 2423 - 2439
  • [37] Convergence analysis of projection method for variational inequalities
    Yekini Shehu
    Olaniyi S. Iyiola
    Xiao-Huan Li
    Qiao-Li Dong
    [J]. Computational and Applied Mathematics, 2019, 38
  • [38] A Relaxed Projection Method for Split Variational Inequalities
    Hongjin He
    Chen Ling
    Hong-Kun Xu
    [J]. Journal of Optimization Theory and Applications, 2015, 166 : 213 - 233
  • [39] Monotone mixed variational inequalities
    Noor, MA
    [J]. APPLIED MATHEMATICS LETTERS, 2001, 14 (02) : 231 - 236
  • [40] Iterative algorithms for generalized monotone variational inequalities
    Muhammad Aslam Noor
    [J]. Korean Journal of Computational and Applied Mathematics, 1999, 6 (1): : 89 - 98