A fuzzy integral sliding-mode parallel control approach for nonlinear descriptor systems

被引:6
|
作者
Zhang, Chunyang [1 ,4 ]
Gong, Dianjun [2 ]
Gao, Qing [1 ,4 ]
Chen, Wei [3 ,4 ,5 ,6 ,7 ]
Wang, Jiannan [3 ,4 ,6 ,7 ]
机构
[1] Beihang Univ, Sch Automat Sci & Elect Engn, Beijing 100191, Peoples R China
[2] Univ Sci & Technol China, Dept Automat, Hefei 230027, Peoples R China
[3] Beihang Univ, Inst Artificial Intelligence, Beijing 100191, Peoples R China
[4] Zhongguancun Lab, Beijing, Peoples R China
[5] Beihang Univ, Sch Math Sci, Beijing 100191, Peoples R China
[6] Minist Educ, Key Lab Math Informat Behav Semant, Beijing 100191, Peoples R China
[7] Peng Cheng Lab, Shenzhen 518055, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Integral sliding-mode parallel controller; T-S fuzzy model; Nonlinear descriptor system; Universality; H-INFINITY CONTROL; STOCHASTIC-SYSTEMS; DESIGN; APPROXIMATION; OBSERVER;
D O I
10.1016/j.ins.2022.10.035
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper considers the stabilization problem of nonlinear descriptor systems through Takagi-Sugeno (T-S) fuzzy models of type 1. A novel fuzzy integral sliding mode parallel control strategy is proposed, where the T-S fuzzy model is employed to equivalently approximate any nonlinear descriptor system. A fuzzy sliding-mode parallel controller is constructed to robustly control the T-S fuzzy model and, consequently, to semi-globally stabilize the corresponding nonlinear descriptor system. The developed control scheme can remove a restrictive assumption on the system input channel and is applicable to gen-eral nonlinear descriptor systems. Moreover, universality discussion of the developed con-troller for two kinds of nonlinear descriptor systems is provided, which endows the proposed method with more confidence in real industrial applications. Finally, two exam-ples numerically demonstrate the feasibility and advantages of the developed controller.(c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页码:491 / 503
页数:13
相关论文
共 50 条
  • [31] Integral Sliding Mode Control for Fractional Order Descriptor Systems
    Babu, Praveen S.
    Xavier, Nithin
    Bandyopadhyay, Bijnan
    2019 18TH EUROPEAN CONTROL CONFERENCE (ECC), 2019, : 3601 - 3605
  • [32] Adaptive fuzzy sliding-mode controller of uncertain nonlinear systems
    Wu, Tai-Zu
    Juang, Yau-Tarng
    ISA TRANSACTIONS, 2008, 47 (03) : 279 - 285
  • [33] Decoupled fuzzy sliding-mode control of a nonlinear aeroelastic structure
    Lin, CM
    Hsu, CF
    PROCEEDINGS OF THE 2002 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOL 1 & 2, 2002, : 662 - 667
  • [34] Adaptive Fuzzy Sliding-Mode Control of Uncertain Nonlinear System
    Zheng, Wenda
    Wu, Gang
    Xu, Gang
    Chen, Xiangchun
    PROCEEDINGS OF THE 2015 INTERNATIONAL CONFERENCE ON MANAGEMENT, EDUCATION, INFORMATION AND CONTROL, 2015, 125 : 707 - 711
  • [35] On nonsingular terminal sliding-mode control of nonlinear systems
    Feng, Yong
    Yu, Xinghuo
    Han, Fengling
    AUTOMATICA, 2013, 49 (06) : 1715 - 1722
  • [36] Improved Integral Fuzzy Sliding Mode Control for a Class of Nonlinear Uncertain Systems
    Li Wen-Qiang
    Li Peng
    Li Lian
    Zhang Yi
    2011 30TH CHINESE CONTROL CONFERENCE (CCC), 2011, : 2859 - 2864
  • [37] Robust fuzzy design for nonlinear uncertain stochastic systems via sliding-mode control
    Ho, Daniel W. C.
    Niu, Yugang
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2007, 15 (03) : 350 - 358
  • [38] Hierarchical Fuzzy Sliding-Mode Control for Uncertain Nonlinear Under-Actuated Systems
    Chiang, Chiang-Cheng
    Yeh, Yao-Wei
    2014 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2014, : 662 - 669
  • [39] Hierarchical fuzzy sliding-mode control for higher-order SISO nonlinear systems
    Yu, Na
    Zhang, Naiyao
    Qinghua Daxue Xuebao/Journal of Tsinghua University, 2005, 45 (04): : 529 - 532
  • [40] A predictive approach to adaptive fuzzy sliding-mode control of under-actuated nonlinear systems with input saturation
    Mousavi, Alireza
    Markazi, Amir H. D.
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2021, 52 (08) : 1599 - 1617