Time-dependent relaxed magnetohydrodynamics: Inclusion of cross helicity constraint using phase-space action

被引:9
作者
Dewar, R. L. [1 ]
Burby, J. W. [2 ]
Qu, Z. S. [1 ]
Sato, N. [3 ]
Hole, M. J. [1 ,4 ]
机构
[1] Australian Natl Univ, Math Sci Inst, Canberra, ACT 2601, Australia
[2] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
[3] Univ Tokyo, Grad Sch Frontier Sci, Kashiwa, Chiba 2778561, Japan
[4] Australian Nucl Sci & Technol Org, Locked Bag 2001, Kirrawee Dc, NSW 2232, Australia
基金
美国国家科学基金会; 澳大利亚研究理事会;
关键词
VARIATIONAL-PRINCIPLES; RELABELING SYMMETRIES; HYDRODYNAMICS; EQUILIBRIUM; RELAXATION; STABILITY; MOTION; WAVES;
D O I
10.1063/5.0005740
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A phase-space version of the ideal magnetohydrodynamic (MHD) Lagrangian is derived from first principles and shown to give a relabeling transformation when a cross-helicity constraint is added in Hamilton's Action Principle. A new formulation of time-dependent "relaxed" magnetohydrodynamics is derived using microscopic conservation of mass and macroscopic constraints on total magnetic helicity, cross helicity, and entropy under variations of density, pressure, fluid velocity, and magnetic vector potential. This gives Euler-Lagrange equations consistent with previous work on both ideal and relaxed MHD equilibria with flow, but generalizes the relaxation concept from statics to dynamics. The application of the new dynamical formalism is illustrated for short-wavelength linear waves, and the interface connection conditions for Multiregion Relaxed MHD (MRxMHD) are derived. The issue of whether E + u x B = 0 should be a constraint is discussed.
引用
收藏
页数:20
相关论文
共 51 条
[2]   ENERGY PRINCIPLE WITH GLOBAL INVARIANTS [J].
BHATTACHARJEE, A ;
DEWAR, RL .
PHYSICS OF FLUIDS, 1982, 25 (05) :887-897
[3]  
Bruno OP, 1996, COMMUN PUR APPL MATH, V49, P717, DOI 10.1002/(SICI)1097-0312(199607)49:7<717::AID-CPA3>3.0.CO
[4]  
2-C
[5]   Magnetohydrodynamic motion of a two-fluid plasma [J].
Burby, J. W. .
PHYSICS OF PLASMAS, 2017, 24 (08)
[6]   Hamiltonian theory of guiding-center motion [J].
Cary, John R. ;
Brizard, Alain J. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (02) :693-738
[7]   NONCANONICAL HAMILTONIAN-MECHANICS AND ITS APPLICATION TO MAGNETIC-FIELD LINE FLOW [J].
CARY, JR ;
LITTLEJOHN, RG .
ANNALS OF PHYSICS, 1983, 151 (01) :1-34
[8]   Multi-region relaxed magnetohydrodynamics with flow [J].
Dennis, G. R. ;
Hudson, S. R. ;
Dewar, R. L. ;
Hole, M. J. .
PHYSICS OF PLASMAS, 2014, 21 (04)
[9]   Multi-region relaxed magnetohydrodynamics in plasmas with slowly changing boundaries-Resonant response of a plasma slab [J].
Dewar, R. L. ;
Hudson, S. R. ;
Bhattacharjee, A. ;
Yoshida, Z. .
PHYSICS OF PLASMAS, 2017, 24 (04)
[10]   The spectrum of multi-region-relaxed magnetohydrodynamic modes in topologically toroidal geometry [J].
Dewar, R. L. ;
Tuen, L. H. ;
Hole, M. J. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2017, 59 (04)