Bayesian semi-supervised learning with support vector machine

被引:26
|
作者
Chakraborty, Sounak [1 ]
机构
[1] Univ Missouri, Dept Stat, Columbia, MO 65211 USA
关键词
Bayesian prediction; Classification; Gene expression microarrays; Markov chain Monte Carlo; Semi-supervised learning; Support vector machine; CLUSTERING ANALYSIS; CLASSIFICATION; CANCER; PREDICTION; DISCRIMINATION; TUMORS;
D O I
10.1016/j.stamet.2009.09.002
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper introduces a Bayesian semi-supervised support vector machine (Semi-BSVM) model for binary classification. Our semi-supervised learning has a distinct advantage over supervised or inductive learning since by design it reduces the problem of overfitting. While a traditional support vector machine (SVM) has the widest margin based on the labeled data only, our semi-supervised form of SVM attempts to find the widest margin in both the labeled and unlabeled data space. This enables us to use some information from the unlabeled data and improve the overall prediction performance. The likelihood is constructed using a special type of hinge loss function which also involves the unlabeled data. A penalty term is added for the likelihood part constructed from the unlabeled data. The parameters and penalties are controlled through nearly diffuse priors for objectivity of the analysis. The rate of learning from the unlabeled data is reflected through the posterior distribution of the penalty parameter from the unlabeled data. This formulation provides us with a control on how much information should be extracted from the unlabeled data without hurting the overall performance of our model. We have applied our model on three simulation data sets and five real life data sets. Our simulation study and real life data analysis show considerable improvement in prediction quality for our semi-supervised learning over supervised learning methods when we have a high learning rate from the unlabeled data. This phenomenon is particularly evident in cases when the amount of unlabeled data is very large compared to the available labeled data. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:68 / 82
页数:15
相关论文
共 50 条
  • [1] Adaptive Laplacian Support Vector Machine for Semi-supervised Learning
    Hu, Rongyao
    Zhang, Leyuan
    Wei, Jian
    COMPUTER JOURNAL, 2021, 64 (07): : 1005 - 1015
  • [2] Semi-supervised learning with Deep Laplacian Support Vector Machine
    Chen, Hangyu
    Xie, Xijiong
    Li, Di
    PATTERN ANALYSIS AND APPLICATIONS, 2025, 28 (01)
  • [3] Online semi-supervised support vector machine
    Liu, Ying
    Xu, Zhen
    Li, Chunguang
    INFORMATION SCIENCES, 2018, 439 : 125 - 141
  • [4] An overview on semi-supervised support vector machine
    Ding, Shifei
    Zhu, Zhibin
    Zhang, Xiekai
    NEURAL COMPUTING & APPLICATIONS, 2017, 28 (05): : 969 - 978
  • [5] An overview on semi-supervised support vector machine
    Shifei Ding
    Zhibin Zhu
    Xiekai Zhang
    Neural Computing and Applications, 2017, 28 : 969 - 978
  • [6] New Incremental Learning Algorithm for Semi-Supervised Support Vector Machine
    Gu, Bin
    Yuan, Xiao-Tong
    Chen, Songcan
    Huang, Heng
    KDD'18: PROCEEDINGS OF THE 24TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2018, : 1475 - 1484
  • [7] Semi-supervised learning combining transductive support vector machine with active learning
    Lu, Boli
    Wang, Xibin
    PROCEEDINGS OF THE 4TH INTERNATIONAL CONFERENCE ON MECHATRONICS, MATERIALS, CHEMISTRY AND COMPUTER ENGINEERING 2015 (ICMMCCE 2015), 2015, 39 : 31 - 40
  • [8] Semi-supervised learning combining transductive support vector machine with active learning
    Wang, Xibin
    Wen, Junhao
    Alam, Shafiq
    Jiang, Zhuo
    Wu, Yingbo
    NEUROCOMPUTING, 2016, 173 : 1288 - 1298
  • [9] Cost-Sensitive Support Vector Machine for Semi-Supervised Learning
    Qi, Zhiquan
    Tian, Yingjie
    Shi, Yong
    Yu, Xiaodan
    2013 INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE, 2013, 18 : 1684 - 1689
  • [10] A Lie group Laplacian Support Vector Machine for semi-supervised learning
    Zhang, Yue
    Liu, Li
    Qiao, Qian
    Li, Fanzhang
    NEUROCOMPUTING, 2025, 630