Dispersion relation and Landau damping of waves in high-energy density plasmas

被引:31
作者
Zhu, Jun [1 ]
Ji, Peiyong [2 ,3 ]
机构
[1] Zhejiang Univ, Dept Opt Engn, State Key Lab Modern Opt Instrumentat, Hangzhou 310027, Peoples R China
[2] Shanghai Univ, Dept Phys, Shanghai 200444, Peoples R China
[3] Shanghai Key Lab Astrophys, Shanghai 200234, Peoples R China
基金
上海市自然科学基金;
关键词
WIGNER FUNCTION-APPROACH; QUANTUM PLASMAS; NEUTRON-STARS; ELECTRON-GAS; PHYSICS; MODEL;
D O I
10.1088/0741-3335/54/6/065004
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We present a theoretical investigation on the propagation of electromagnetic waves and electron plasma waves in high energy density plasmas using the covariant Wigner function approach. Based on the covariant Wigner function and Dirac equation, a relativistic quantum kinetic model is established to describe the physical processes in high-energy density plasmas. With the zero-temperature Fermi-Dirac distribution, the dispersion relation and Landau damping of waves containing the relativistic quantum corrected terms are derived. The relativistic quantum corrections to the dispersion relation and Landau damping are analyzed by comparing our results with those obtained in classical and non-relativistic quantum plasmas. We provide a detailed discussion on the Landau damping obtained in classical plasmas, non-relativistic Fermi plasmas and relativistic Fermi plasmas. The contributions of the Bohm potential, the Fermi statistics pressure and relativistic effects to the dispersion relation and Landau damping of waves are quantitatively calculated with real plasma parameters.
引用
收藏
页数:6
相关论文
共 28 条
[1]   QUANTUM FLUCTUATIONS OF THE RELATIVISTIC SCALAR PLASMA IN THE HARTREE-VLASOV APPROXIMATION [J].
ALONSO, JD ;
HAKIM, R .
PHYSICAL REVIEW D, 1984, 29 (12) :2690-2700
[2]   Present status of the FIREX programme for the demonstration of ignition and burn [J].
Azechi, Hiroshi .
PLASMA PHYSICS AND CONTROLLED FUSION, 2006, 48 (12B) :B267-B275
[3]  
BOHM D, 1952, PHYS REV, V85, P166, DOI 10.1103/PhysRev.85.166
[4]   Dense plasmas in astrophysics: from giant planets to neutron stars [J].
Chabrier, G. ;
Saumon, D. ;
Potekhin, A. Y. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (17) :4411-4419
[5]   Dense astrophysical plasmas [J].
Chabrier, G ;
Douchin, F ;
Potekhin, AY .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2002, 14 (40) :9133-9139
[6]   Plasma physics and planetary astrophysics [J].
Chabrier, Gilles .
PLASMA PHYSICS AND CONTROLLED FUSION, 2009, 51 (12)
[7]   Smooth quantum potential for the hydrodynamic model [J].
Gardner, CL ;
Ringhofer, C .
PHYSICAL REVIEW E, 1996, 53 (01) :157-167
[8]   Observations of plasmons in warm dense matter [J].
Glenzer, S. H. ;
Landen, O. L. ;
Neumayer, P. ;
Lee, R. W. ;
Widmann, K. ;
Pollaine, S. W. ;
Wallace, R. J. ;
Gregori, G. ;
Hoell, A. ;
Bornath, T. ;
Thiele, R. ;
Schwarz, V. ;
Kraeft, W. -D. ;
Redmer, R. .
PHYSICAL REVIEW LETTERS, 2007, 98 (06)
[9]   X-ray Thomson scattering in high energy density plasmas [J].
Glenzer, Siegfried H. ;
Redmer, Ronald .
REVIEWS OF MODERN PHYSICS, 2009, 81 (04) :1625-1663
[10]   Multistream model for quantum plasmas [J].
Haas, F ;
Manfredi, G ;
Feix, M .
PHYSICAL REVIEW E, 2000, 62 (02) :2763-2772