Three-dimensional porous nano-Ni supported silicon composite film for high-performance lithium-ion batteries

被引:84
作者
Zhang, Y. Q. [1 ]
Xia, X. H. [1 ]
Wang, X. L. [1 ]
Mai, Y. J. [1 ]
Shi, S. J. [1 ]
Tang, Y. Y. [1 ]
Cu, C. G. [1 ]
Tu, J. P. [1 ]
机构
[1] Zhejiang Univ, Dept Mat Sci & Engn, State Key Lab Silicon Mat, Hangzhou 310027, Peoples R China
基金
中国博士后科学基金;
关键词
Amorphous silicon; Magnetron sputtering; Hydrogen bubble template; Porous film; Lithium-ion battery; CORE-SHELL NANOWIRES; ANODE MATERIALS; HIGH-CAPACITY; ELECTROCHEMICAL PERFORMANCES; NANOSTRUCTURED MATERIALS; SECONDARY BATTERIES; ENERGY-CONVERSION; STORAGE DEVICES; THIN-FILMS; NANOCOMPOSITE;
D O I
10.1016/j.jpowsour.2012.03.052
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A three-dimensional (3D) porous nano-Ni supported Si composite film is successfully fabricated by the combination of hydrogen bubble template electrodeposition of porous nano-Ni film and radiofrequency magnetron sputtering amorphous silicon. As anode for lithium-ion batteries, the 3D porous Ni/Si composite film shows noticeable electrochemical performance with high capacity of 2444 mAh g(-1), at a current density of 0.84 A g(-1), superior capacity retention of 83% after 100 cycles, as well as excellent rate capability with 1420 and 1273 mAh g(-1) at charge-discharge current densities of 4.2 A g(-1) and 8.4 A g(-1) after 100 cycles, respectively. The enhanced electrochemical performance is mainly attributed to the highly porous conductive architecture, which provides good mechanical support and electron conducting pathway for active silicon and alleviates the structure degradation caused by volume expansion during the cycling process. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:106 / 111
页数:6
相关论文
共 45 条
[1]   Nanostructured materials for advanced energy conversion and storage devices [J].
Aricò, AS ;
Bruce, P ;
Scrosati, B ;
Tarascon, JM ;
Van Schalkwijk, W .
NATURE MATERIALS, 2005, 4 (05) :366-377
[2]   Amorphous silicon thin films as a high capacity anodes for Li-ion batteries in ionic liquid electrolytes [J].
Baranchugov, V. ;
Markevich, E. ;
Pollak, E. ;
Salitra, G. ;
Aurbach, D. .
ELECTROCHEMISTRY COMMUNICATIONS, 2007, 9 (04) :796-800
[3]   Cu-Si Nanocable Arrays as High-Rate Anode Materials for Lithium-Ion Batteries [J].
Cao, Fei-Fei ;
Deng, Jun-Wen ;
Xin, Sen ;
Ji, Heng-Xing ;
Schmidt, Oliver G. ;
Wan, Li-Jun ;
Guo, Yu-Guo .
ADVANCED MATERIALS, 2011, 23 (38) :4415-+
[4]   High-performance lithium battery anodes using silicon nanowires [J].
Chan, Candace K. ;
Peng, Hailin ;
Liu, Gao ;
McIlwrath, Kevin ;
Zhang, Xiao Feng ;
Huggins, Robert A. ;
Cui, Yi .
NATURE NANOTECHNOLOGY, 2008, 3 (01) :31-35
[5]   Solution-Grown Silicon Nanowires for Lithium-Ion Battery Anodes [J].
Chan, Candace K. ;
Patel, Reken N. ;
O'Connell, Michael J. ;
Korgel, Brian A. ;
Cui, Yi .
ACS NANO, 2010, 4 (03) :1443-1450
[6]   Silicon nanowires coated with copper layer as anode materials for lithium-ion batteries [J].
Chen, Huixin ;
Xiao, Ying ;
Wang, Lin ;
Yang, Yong .
JOURNAL OF POWER SOURCES, 2011, 196 (16) :6657-6662
[7]   Virus-Enabled Silicon Anode for Lithium-Ion Batteries [J].
Chen, Xilin ;
Gerasopoulos, Konstantinos ;
Guo, Juchen ;
Brown, Adam ;
Wang, Chunsheng ;
Ghodssi, Reza ;
Culver, James N. .
ACS NANO, 2010, 4 (09) :5366-5372
[8]   Electrochemical performances of Cu nanodots modified amorphous Si thin films for lithium-ion batteries [J].
Chiu, K. -F. ;
Lin, K. M. ;
Lin, H. C. ;
Hsu, C. H. ;
Chen, C. C. ;
Shieh, D. T. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2008, 155 (09) :A623-A627
[9]   Recent Progress in the Development of Anode Materials for Solid Oxide Fuel Cells [J].
Cowin, Peter I. ;
Petit, Christophe T. G. ;
Lan, Rong ;
Irvine, John T. S. ;
Tao, Shanwen .
ADVANCED ENERGY MATERIALS, 2011, 1 (03) :314-332
[10]   Si/C composite lithium-ion battery anodes synthesized from coarse silicon and citric acid through combined ball milling and thermal pyrolysis [J].
Cu, Peng ;
Cai, Rui ;
Zhou, Yingke ;
Shao, Zongping .
ELECTROCHIMICA ACTA, 2010, 55 (12) :3876-3883