Comparisons of graph-structure clustering methods for gene expression data

被引:4
作者
Fang, Zhuo
Liu, Lei
Yang, Jiong
Luo, Qing-Ming
Li, Yi-Xue [1 ]
机构
[1] Huazhong Univ Sci & Technol, Coll Life Sci & Technol, Hubei Bioinformat & Mol Imaging Key Lab, Wuhan 430074, Peoples R China
[2] Shanghai Ctr Bioinformat Technol, Shanghai 200235, Peoples R China
[3] Case Western Reserve Univ, Dept EECS, Cleveland, OH 44106 USA
[4] Univ Illinois, WM Keck Ctr Comparat & Funct Genom, Urbana, IL 61801 USA
关键词
clustering; expression pattern; biological function;
D O I
10.1111/j.1745-7270.2006.00175.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Although many numerical clustering algorithms have been applied to gene expression data analysis, the essential step is still biological interpretation by manual inspection. The correlation between genetic co-regulation and affiliation to a common biological process is what biologists expect. Here, we introduce some clustering algorithms that are based on graph structure constituted by biological knowledge. After applying a widely used dataset, we compared the result clusters of two of these algorithms in terms of the homogeneity of clusters and coherence of annotation and matching ratio. The results show that the clusters of knowledge-guided analysis are the kernel parts of the clusters of Gene Ontology (GO)-Cluster software, which contains the genes that are most expression correlative and most consistent with biological functions. Moreover, knowledge-guided analysis seems much more applicable than GO-Cluster in a larger dataset.
引用
收藏
页码:379 / 384
页数:6
相关论文
共 28 条
[1]   Gene-Ontology-based clustering of gene expression data [J].
Adryan, B ;
Schuh, R .
BIOINFORMATICS, 2004, 20 (16) :2851-2852
[2]   Gene Ontology: tool for the unification of biology [J].
Ashburner, M ;
Ball, CA ;
Blake, JA ;
Botstein, D ;
Butler, H ;
Cherry, JM ;
Davis, AP ;
Dolinski, K ;
Dwight, SS ;
Eppig, JT ;
Harris, MA ;
Hill, DP ;
Issel-Tarver, L ;
Kasarskis, A ;
Lewis, S ;
Matese, JC ;
Richardson, JE ;
Ringwald, M ;
Rubin, GM ;
Sherlock, G .
NATURE GENETICS, 2000, 25 (01) :25-29
[3]   Graph-based iterative Group Analysis enhances microarray interpretation [J].
Breitling, R ;
Amtmann, A ;
Herzyk, P .
BMC BIOINFORMATICS, 2004, 5 (1)
[4]  
Cheng Jill, 2004, J Biopharm Stat, V14, P687, DOI 10.1081/BIP-200025659
[5]  
CHENG Y, 2000, P 8 INT C INT SYST M, P93
[6]  
Clare Amanda, 2002, In Silico Biology, V2, P511
[7]   Adaptive quality-based clustering of gene expression profiles [J].
De Smet, F ;
Mathys, J ;
Marchal, K ;
Thijs, G ;
De Moor, B ;
Moreau, Y .
BIOINFORMATICS, 2002, 18 (05) :735-746
[8]   MAPPFinder: using Gene Ontology and GenMAPP to create a global gene-expression profile from microarray data [J].
Doniger, SW ;
Salomonis, N ;
Dahlquist, KD ;
Vranizan, K ;
Lawlor, SC ;
Conklin, BR .
GENOME BIOLOGY, 2003, 4 (01)
[9]   Saccharomyces Genome Database (SGD) provides secondary gene annotation using the Gene Ontology (GO) [J].
Dwight, SS ;
Harris, MA ;
Dolinski, K ;
Ball, CA ;
Binkley, G ;
Christie, KR ;
Fisk, DG ;
Issel-Tarver, L ;
Schroeder, M ;
Sherlock, G ;
Sethuraman, A ;
Weng, S ;
Botstein, D ;
Cherry, JM .
NUCLEIC ACIDS RESEARCH, 2002, 30 (01) :69-72
[10]   Cluster analysis and display of genome-wide expression patterns [J].
Eisen, MB ;
Spellman, PT ;
Brown, PO ;
Botstein, D .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (25) :14863-14868