Deoxyguanosine Phosphate Mediated Sacrificial Bonds Promote Synergistic Mechanical Properties in Nacre-Mimetic Nanocomposites

被引:23
作者
Martikainen, Lahja [1 ]
Walther, Andreas [2 ]
Seitsonen, Jani [3 ]
Berglund, Lars [4 ]
Ikkala, Olli [1 ]
机构
[1] Aalto Univ, Dept Appl Phys, FI-00076 Espoo, Finland
[2] Rhein Westfal TH Aachen, DWI, D-52056 Aachen, Germany
[3] Aalto Univ, Nanomicroscopy Ctr, FI-00076 Espoo, Finland
[4] KTH, Royal Inst Technol, Wallenberg Wood Sci Ctr, SE-10044 Stockholm, Sweden
基金
芬兰科学院;
关键词
DEFORMATION; POLYMER; MOTHER; DESIGN; TOUGHNESS; STRENGTH; FRACTURE; PEARL;
D O I
10.1021/bm400056c
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We show that functionalizing polymer-coated colloidal nanoplatelets with guanosine groups allows synergistic increase of mechanical properties in nacre-mimetic lamellar self-assemblies. Anionic montmorillonite (MTM) was first coated using cationic poly(diallyldimethylammonium chloride) (PDADMAC) to prepare core-shell colloidal platelets, and subsequently the remaining chloride counterions allowed exchange to functional anionic 2'-deoxyguanosine 5'-monophosphate (dGMP) counterions, containing hydrogen bonding donors and acceptors. The compositions were studied using elemental analysis, scanning and transmission electron microscopy, wide-angle X-ray scattering, and tensile testing. The lamellar spacing between the clays increases from 1.85 to 2.14 nm upon addition of the dGMP. Adding dGMP increases the elastic modulus, tensile strength, and strain 33.0%, 40.9%, and 5.6%, respectively, to 13.5 GPa, 67 MPa, and 1.24%, at 50% relative humidity. This leads to an improved toughness seen as a ca. 50% increase of the work-to-failure. This is noteworthy, as previously it has been observed that connecting the core-shell nanoclay platelets covalently or ionically leads to increase of the stiffness but to reduced strain. We suggest that the dynamic supramolecular bonds allow slippage and sacrificial bonds between the self-assembling nanoplatelets, thus promoting toughness, still providing dynamic interactions between the platelets.
引用
收藏
页码:2531 / 2535
页数:5
相关论文
共 35 条
[1]   An experimental investigation of deformation and fracture of nacre-mother of pearl [J].
Barthelat, F. ;
Espinosa, H. D. .
EXPERIMENTAL MECHANICS, 2007, 47 (03) :311-324
[2]   On the mechanics of mother-of-pearl: A key feature in the material hierarchical structure [J].
Barthelat, F. ;
Tang, H. ;
Zavattieri, P. D. ;
Li, C. -M. ;
Espinosa, H. D. .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2007, 55 (02) :306-337
[3]   Biomimetics: lessons from nature - an overview [J].
Bhushan, Bharat .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2009, 367 (1893) :1445-1486
[4]   Bioinspired design and assembly of platelet reinforced polymer films [J].
Bonderer, Lorenz J. ;
Studart, Andre R. ;
Gauckler, Ludwig J. .
SCIENCE, 2008, 319 (5866) :1069-1073
[5]  
CURREY JD, 1977, PROC R SOC SER B-BIO, V196, P443, DOI 10.1098/rspb.1977.0050
[6]   G-quartets 40 years later:: From 5′-GMP to molecular biology and supramolecular chemistry [J].
Davis, JT .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2004, 43 (06) :668-698
[7]   Freezing as a path to build complex composites [J].
Deville, S ;
Saiz, E ;
Nalla, RK ;
Tomsia, AP .
SCIENCE, 2006, 311 (5760) :515-518
[8]   Tablet-level origin of toughening in abalone shells and translation to synthetic composite materials [J].
Espinosa, Horacio D. ;
Juster, Allison L. ;
Latourte, Felix J. ;
Loh, Owen Y. ;
Gregoire, David ;
Zavattieri, Pablo D. .
NATURE COMMUNICATIONS, 2011, 2
[9]   Merger of structure and material in nacre and bone - Perspectives on de novo biomimetic materials [J].
Espinosa, Horacio D. ;
Rim, Jee E. ;
Barthelat, Francois ;
Buehler, Markus J. .
PROGRESS IN MATERIALS SCIENCE, 2009, 54 (08) :1059-1100
[10]   Sacrificial bonds and hidden length dissipate energy as mineralized fibrils separate during bone fracture [J].
Fantner, GE ;
Hassenkam, T ;
Kindt, JH ;
Weaver, JC ;
Birkedal, H ;
Pechenik, L ;
Cutroni, JA ;
Cidade, GAG ;
Stucky, GD ;
Morse, DE ;
Hansma, PK .
NATURE MATERIALS, 2005, 4 (08) :612-616