An interpolation approach for fitting computationally intensive models

被引:3
|
作者
Moore, L. Richard, Jr. [1 ]
Gunzelmann, Glenn [2 ]
机构
[1] L3 Commun, Mesa, AZ 85212 USA
[2] Air Force Res Lab, Cognit Models & Agents Branch, Wright Patterson AFB, OH 45434 USA
关键词
Cognitive moderator; Mathematical model; Cognitive model; Model proxy; OPTIMIZATION; PERFORMANCE;
D O I
10.1016/j.cogsys.2013.09.001
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Computational cognitive modeling has been established as a useful methodology for exploring and validating quantitative theories about human cognitive processing and behavior. In some cases, however, complex models can create challenges for parameter exploration and estimation due to extended execution times and limited computing capacity. To address this challenge, some modelers have turned to intelligent search algorithms and/or large-scale computational resources. For an emerging class of models, epitomized by attempts to predict the time course effects of cognitive moderators, even these techniques may not be sufficient. In this paper, we present a new methodology and associated software that allows modelers to instantiate a model proxy that can quickly interpolate predictions of model performance anywhere within a defined parameter space. The software integrates with the R statistics environment and is compatible with many of the fitting algorithms therein. To illustrate the utility of these capabilities, we describe a case study where we are using the methodology in our own research. (C) 2013 Elsevier B. V. All rights reserved.
引用
收藏
页码:53 / 65
页数:13
相关论文
共 50 条
  • [11] Modelling and traceability for computationally-intensive precision engineering and metrology
    Linares, J. M.
    Goch, G.
    Forbes, A.
    Sprauel, J. M.
    Clement, A.
    Haertig, E.
    Gao, W.
    CIRP ANNALS-MANUFACTURING TECHNOLOGY, 2018, 67 (02) : 815 - 838
  • [12] A Multi-Objective Genetic Algorithm Based on Fitting and Interpolation
    Han, Chuang
    Wang, Ling
    Zhang, Zhaolin
    Xie, Jian
    Xing, Zijian
    IEEE ACCESS, 2018, 6 : 22920 - 22929
  • [13] A template fitting approach for cognitive unimodular sequence design
    Ge, Peng
    Cui, Guolong
    Karbasi, Seyyed Mohammad
    Kong, Lingjiang
    Yang, Jianyu
    SIGNAL PROCESSING, 2016, 128 : 360 - 368
  • [14] A computationally efficient approach to swimming monofin optimization
    Luersen, M. A.
    Le Riche, R.
    Lemosse, D.
    Le Maitre, O.
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2006, 31 (06) : 488 - 496
  • [15] A computationally efficient approach to swimming monofin optimization
    M. A. Luersen
    R. Le Riche
    D. Lemosse
    O. Le Maître
    Structural and Multidisciplinary Optimization, 2006, 31 : 488 - 496
  • [16] Fitting neuron models to spike trains
    Rossant, Cyrille
    Goodman, Dan F. M.
    Fontaine, Bertrand
    Platkiewicz, Jonathan
    Magnusson, Anna K.
    Brette, Romain
    FRONTIERS IN NEUROSCIENCE, 2011, 5
  • [17] Uncertainty Analysis for Computationally Expensive Models with Multiple Outputs
    Ruppert, David
    Shoemaker, Christine A.
    Wang, Yilun
    Li, Yingxing
    Bliznyuk, Nikolay
    JOURNAL OF AGRICULTURAL BIOLOGICAL AND ENVIRONMENTAL STATISTICS, 2012, 17 (04) : 623 - 640
  • [18] NONLOCAL VARIATIONAL MODELS FOR INPAINTING AND INTERPOLATION
    Arias, Pablo
    Caselles, Vicent
    Facciolo, Gabriele
    Lazcano, Vanel
    Sadek, Rida
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2012, 22
  • [19] Online execution time prediction for computationally intensive applications with periodic progress updates
    Maria Chtepen
    Filip H. A. Claeys
    Bart Dhoedt
    Filip De Turck
    Jan Fostier
    Piet Demeester
    Peter A. Vanrolleghem
    The Journal of Supercomputing, 2012, 62 : 768 - 786
  • [20] OPTIMAL DATA FITTING: A MOMENT APPROACH
    Lasserre, Jean-Bernard
    Magron, Victor
    SIAM JOURNAL ON OPTIMIZATION, 2018, 28 (04) : 3127 - 3144