Anisotropic Eliashberg function and electron-phonon coupling in doped graphene

被引:45
作者
Haberer, D. [1 ,2 ]
Petaccia, L. [3 ]
Fedorov, A. V. [1 ,4 ]
Praveen, C. S. [5 ,6 ]
Fabris, S. [5 ,6 ]
Piccinin, S. [5 ,6 ]
Vilkov, O. [4 ,7 ]
Vyalikh, D. V. [4 ,7 ]
Preobrajenski, A. [8 ]
Verbitskiy, N. I. [9 ,10 ]
Shiozawa, H. [9 ]
Fink, J. [1 ]
Knupfer, M. [1 ]
Buechner, B. [1 ]
Grueneis, A. [1 ,9 ]
机构
[1] IFW Dresden, D-01171 Dresden, Germany
[2] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[3] Elettra Sincrotrone Trieste, I-34149 Trieste, Italy
[4] St Petersburg State Univ, St Petersburg 198504, Russia
[5] CNR IOM DEMOCRITOS Theory Elettra Grp, I-34136 Trieste, Italy
[6] SISSA, I-34136 Trieste, Italy
[7] Tech Univ Dresden, Inst Festkorperphys, D-01069 Dresden, Germany
[8] Lund Univ, Lab MAX 4, S-22100 Lund, Sweden
[9] Univ Vienna, Fac Phys, A-1090 Vienna, Austria
[10] Moscow MV Lomonosov State Univ, Dept Mat Sci, Moscow 119992, Russia
关键词
SUPERCONDUCTIVITY; GAP;
D O I
10.1103/PhysRevB.88.081401
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We investigate, with high-resolution angle-resolved photoemission spectroscopy, the spectral function of potassium-doped quasi-free-standing graphene on Au. Angle-dependent x-ray photoemission and density functional theory calculations demonstrate that potassium intercalates into the graphene/Au interface, leading to an upshift of the K-derived electronic band above the Fermi level. This empty band is what makes this system perfectly suited to disentangle the contributions to electron-phonon coupling coming from the pi band and K-derived bands. From a self-energy analysis we find an anisotropic electron-phonon coupling strength lambda of 0.1 (0.2) for the K Gamma (K M) high-symmetry directions in momentum space, respectively. Interestingly, the high-energy part of the Eliashberg function which relates to graphene's optical phonons is equal in both directions but only in K M does an additional low-energy part appear.
引用
收藏
页数:5
相关论文
共 49 条
[1]   Electron-phonon coupling in potassium-doped graphene: Angle-resolved photoemission spectroscopy [J].
Bianchi, M. ;
Rienks, E. D. L. ;
Lizzit, S. ;
Baraldi, A. ;
Balog, R. ;
Hornekaer, L. ;
Hofmann, Ph. .
PHYSICAL REVIEW B, 2010, 81 (04)
[2]   Electron-phonon interaction in graphite intercalation compounds [J].
Boeri, Lilia ;
Bachelet, Giovanni B. ;
Giantomassi, Matteo ;
Andersen, Ole K. .
PHYSICAL REVIEW B, 2007, 76 (06)
[3]   Theoretical explanation of superconductivity in C6Ca -: art. no. 237002 [J].
Calandra, M ;
Mauri, F .
PHYSICAL REVIEW LETTERS, 2005, 95 (23)
[4]   Possibility of superconductivity in graphite intercalated with alkaline earths investigated with density functional theory [J].
Calandra, Matteo ;
Mauri, Francesco .
PHYSICAL REVIEW B, 2006, 74 (09)
[5]   Electron-phonon coupling and electron self-energy in electron-doped graphene: Calculation of angular-resolved photoemission spectra [J].
Calandra, Matteo ;
Mauri, Francesco .
PHYSICAL REVIEW B, 2007, 76 (20)
[6]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[7]   The role of the interlayer state in the electronic structure of superconducting graphite intercalated compounds [J].
Csányi, G ;
Littlewood, PB ;
Nevidomskyy, AH ;
Pickard, CJ ;
Simons, BD .
NATURE PHYSICS, 2005, 1 (01) :42-45
[8]   Superconductivity in diamond [J].
Ekimov, EA ;
Sidorov, VA ;
Bauer, ED ;
Mel'nik, NN ;
Curro, NJ ;
Thompson, JD ;
Stishov, SM .
NATURE, 2004, 428 (6982) :542-545
[9]   Superconductivity of bulk CaC6 -: art. no. 087003 [J].
Emery, N ;
Hérold, C ;
d'Astuto, M ;
Garcia, V ;
Bellin, C ;
Marêché, JF ;
Lagrange, P ;
Loupias, G .
PHYSICAL REVIEW LETTERS, 2005, 95 (08)
[10]   The rise of graphene [J].
Geim, A. K. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (03) :183-191