Wavelet approach to operator-valued Hardy spaces

被引:7
作者
Hong, Guixiang [1 ]
Yin, Zhi [1 ,2 ]
机构
[1] Univ Franche Comte, Math Lab, F-25030 Besancon, France
[2] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Hubei, Peoples R China
关键词
Noncommutative L-p spaces; Hardy spaces; BMO spaces; wavelets; duality; interpolation; BMO;
D O I
10.4171/RMI/720
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is devoted to the study of operator-valued Hardy spaces via the wavelet method. This approach is parallel to that in the noncommutative martingale case. We show that our Hardy spaces defined by wavelets coincide with those introduced by Tao Mei via the usual Lusin and Littlewood-Paley square functions. As a consequence, we give an explicit complete unconditional basis of the Hardy space H-1(R) when H-1(R) is equipped with an appropriate operator space structure.
引用
收藏
页码:293 / 313
页数:21
相关论文
共 24 条
[1]  
[Anonymous], 1992, CAMBRIDGE STUDIES AD
[2]   Atomic decomposition and interpolation for Hardy spaces of noncommutative martingales [J].
Bekjan, Turdebek N. ;
Chen, Zeqian ;
Perrin, Mathilde ;
Yin, Zhi .
JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 258 (07) :2483-2505
[3]  
Cuculescu I., 1971, J. Multivariate Anal, V1, P17, DOI DOI 10.1016/0047-259X(71)90027-3
[4]   Maximal theorems of Menchoff-Rademacher type in non-commutative Lq-spaces [J].
Defant, A ;
Junge, M .
JOURNAL OF FUNCTIONAL ANALYSIS, 2004, 206 (02) :322-355
[5]  
Fefferman C, 1972, ACTA MATH-DJURSHOLM, V129, P137, DOI 10.1007/BF02392215
[6]   A characterization of product BMO by commutators [J].
Ferguson, SH ;
Lacey, MT .
ACTA MATHEMATICA, 2002, 189 (02) :143-160
[7]   WAVELET EXPANSIONS FOR WEIGHTED, VECTOR-VALUED BMO FUNCTIONS [J].
Hytonen, Tuomas ;
Salinas, Oscar ;
Viviani, Beatriz .
JOURNAL D ANALYSE MATHEMATIQUE, 2010, 111 :321-337
[8]   On the best constants in some non-commutative martingale inequalities [J].
Junge, M ;
Xu, QH .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2005, 37 :243-253
[9]  
Junge M, 2003, ANN PROBAB, V31, P948
[10]  
Junge M, 2002, J REINE ANGEW MATH, V549, P149