A linear time algorithm for inverse obnoxious center location problems on networks

被引:20
作者
Alizadeh, Behrooz [1 ]
Burkard, Rainer E. [2 ]
机构
[1] Sahand Univ Technol, Fac Basic Sci, Dept Appl Math, Tabriz, Iran
[2] Graz Univ Technol, Inst Optimizat & Discrete Math, A-8010 Graz, Austria
基金
奥地利科学基金会;
关键词
Obnoxious center location; Combinatorial optimization; Inverse optimization; Computational complexity;
D O I
10.1007/s10100-012-0248-5
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
For an inverse obnoxious center location problem, the edge lengths of the underlying network have to be changed within given bounds at minimum total cost such that a predetermined point of the network becomes an obnoxious center location under the new edge lengths. The cost is proportional to the increase or decrease, resp., of the edge length. The total cost is defined as sum of all cost incurred by length changes. For solving this problem on a network with m edges an algorithm with running time is developed.
引用
收藏
页码:585 / 594
页数:10
相关论文
共 18 条
  • [1] Uniform-cost inverse absolute and vertex center location problems with edge length variations on trees
    Alizadeh, Behrooz
    Burkard, Rainer E.
    [J]. DISCRETE APPLIED MATHEMATICS, 2011, 159 (08) : 706 - 716
  • [2] Combinatorial Algorithms for Inverse Absolute and Vertex 1-Center Location Problems on Trees
    Alizadeh, Behrooz
    Burkard, Rainer E.
    [J]. NETWORKS, 2011, 58 (03) : 190 - 200
  • [3] Inverse 1-center location problems with edge length augmentation on trees
    Alizadeh, Behrooz
    Burkard, Rainer E.
    Pferschy, Ulrich
    [J]. COMPUTING, 2009, 86 (04) : 331 - 343
  • [4] Inverse p-median problems with variable edge lengths
    Bonab, Fahimeh Baroughi
    Burkard, Rainer E.
    Gassner, Elisabeth
    [J]. MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 2011, 73 (02) : 263 - 280
  • [5] Inverse median location problems with variable coordinates
    Bonab, Fahimeh Baroughi
    Burkard, Rainer E.
    Alizadeh, Behrooz
    [J]. CENTRAL EUROPEAN JOURNAL OF OPERATIONS RESEARCH, 2010, 18 (03) : 365 - 381
  • [6] Burkard R.E., 2004, Discrete Optimization, V1, P23, DOI [10.1016/j.disopt.2004.03.003, DOI 10.1016/J.DISOPT.2004.03.003]
  • [7] The inverse 1-median problem on a cycle
    Burkard, Rainer E.
    Pleschiutschnig, Carmen
    Zhang, Jianzhong
    [J]. DISCRETE OPTIMIZATION, 2008, 5 (02) : 242 - 253
  • [8] The inverse Fermat-Weber problem
    Burkard, Rainer E.
    Galavii, Mohammadreza
    Gassner, Elisabeth
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2010, 206 (01) : 11 - 17
  • [9] The complexity analysis of the inverse center location problem
    Cai, MC
    Yang, XG
    Zhang, JZ
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 1999, 15 (02) : 213 - 218
  • [10] Discrete facility location and routing of obnoxious activities
    Cappanera, P
    Gallo, G
    Maffioli, F
    [J]. DISCRETE APPLIED MATHEMATICS, 2003, 133 (1-3) : 3 - 28