The Bacterial Cytoplasm Has Glass-like Properties and Is Fluidized by Metabolic Activity

被引:603
作者
Parry, Bradley R. [1 ]
Surovtsev, Ivan V. [1 ,2 ]
Cabeen, Matthew T. [1 ]
O'Hem, Corey S. [3 ,4 ,5 ]
Dufresne, Eric R. [4 ,5 ,6 ,7 ]
Jacobs-Wagner, Christine [1 ,2 ,8 ]
机构
[1] Yale Univ, Dept Mol Cellular & Dev Biol, New Haven, CT 06520 USA
[2] Yale Univ, Howard Hughes Med Inst, New Haven, CT 06520 USA
[3] Yale Univ, Dept Appl Phys, New Haven, CT 06520 USA
[4] Yale Univ, Dept Phys, New Haven, CT 06520 USA
[5] Yale Univ, Dept Mech Engn & Mat Sci, New Haven, CT 06520 USA
[6] Yale Univ, Dept Chem & Environm Engn, New Haven, CT 06520 USA
[7] Yale Univ, Dept Cell Biol, New Haven, CT 06520 USA
[8] Yale Univ, Sch Med, Dept Microbial Pathogenesis, New Haven, CT 06510 USA
基金
美国国家卫生研究院;
关键词
CELL CURVATURE; PROTEIN; DYNAMICS; DIFFUSION; MOBILITY; HETEROGENEITIES; BIOSYNTHESIS; CYTOSKELETON; TRANSITION; CHROMATIN;
D O I
10.1016/j.cell.2013.11.028
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The physical nature of the bacterial cytoplasm is poorly understood even though it determines cytoplasmic dynamics and hence cellular physiology and behavior. Through single-particle tracking of protein filaments, plasmids, storage granules, and foreign particles of different sizes, we find that the bacterial cytoplasm displays properties that are characteristic of glass-forming liquids and changes from liquid-like to solid-like in a component size-dependent fashion. As a result, the motion of cytoplasmic components becomes disproportionally constrained with increasing size. Remarkably, cellular metabolism fluidizes the cytoplasm, allowing larger components to escape their local environment and explore larger regions of the cytoplasm. Consequently, cytoplasmic fluidity and dynamics dramatically change as cells shift between metabolically active and dormant states in response to fluctuating environments. Our findings provide insight into bacterial dormancy and have broad implications to our understanding of bacterial physiology, as the glassy behavior of the cytoplasm impacts all intracellular processes involving large components.
引用
收藏
页码:183 / 194
页数:12
相关论文
共 47 条
[1]   The bacterial cytoskeleton: An intermediate filament-like function [J].
Ausmees, N ;
Kuhn, JR ;
Jacobs-Wagner, C .
CELL, 2003, 115 (06) :705-713
[2]   Subdiffraction-Limit Study of Kaede Diffusion and Spatial Distribution in Live Escherichia coli [J].
Bakshi, Somenath ;
Bratton, Benjamin P. ;
Weisshaar, James C. .
BIOPHYSICAL JOURNAL, 2011, 101 (10) :2535-2544
[3]  
Berthier Ludovic, 2011, Physics, V4, DOI 10.1103/Physics.4.42
[4]   Intracellular transport by active diffusion [J].
Brangwynne, Clifford P. ;
Koenderink, Gijsje H. ;
MacKintosh, Frederick C. ;
Weitz, David A. .
TRENDS IN CELL BIOLOGY, 2009, 19 (09) :423-427
[5]   Carboxyl-proximal regions of reovirus nonstructural protein μNS necessary and sufficient for forming factory-like inclusions [J].
Broering, TJ ;
Arnold, MM ;
Miller, CL ;
Hurt, JA ;
Joyce, PL ;
Nibert, ML .
JOURNAL OF VIROLOGY, 2005, 79 (10) :6194-6206
[6]   Mutations in the Lipopolysaccharide Biosynthesis Pathway Interfere with Crescentin-Mediated Cell Curvature in Caulobacter crescentus [J].
Cabeen, Matthew T. ;
Murolo, Michelle A. ;
Briegel, Ariane ;
Bui, N. Khai ;
Vollmer, Waldemar ;
Ausmees, Nora ;
Jensen, Grant J. ;
Jacobs-Wagner, Christine .
JOURNAL OF BACTERIOLOGY, 2010, 192 (13) :3368-3378
[7]   Bacterial cell curvature through mechanical control of cell growth [J].
Cabeen, Matthew T. ;
Charbon, Godefroid ;
Vollmer, Waldemar ;
Born, Petra ;
Ausmees, Nora ;
Weibel, Douglas B. ;
Jacobs-Wagner, Christine .
EMBO JOURNAL, 2009, 28 (09) :1208-1219
[8]   CHARACTERIZATION OF THE CYTOPLASM OF ESCHERICHIA-COLI-K-12 AS A FUNCTION OF EXTERNAL OSMOLARITY - IMPLICATIONS FOR PROTEIN DNA INTERACTIONS INVIVO [J].
CAYLEY, S ;
LEWIS, BA ;
GUTTMAN, HJ ;
RECORD, MT .
JOURNAL OF MOLECULAR BIOLOGY, 1991, 222 (02) :281-300
[9]   Slow dynamics in glassy soft matter [J].
Cipelletti, L ;
Ramos, L .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2005, 17 (06) :R253-R285
[10]  
Coates AR., 2003, Dormancy and low growth states in microbial disease