The Harmonic Oscillator on the Heisenberg Group

被引:4
作者
Rottensteiner, David [1 ]
Ruzhansky, Michael [1 ,2 ]
机构
[1] Univ Ghent, Dept Math Anal Log & Discrete Math, Krijgslaan 281,S8, B-9000 Ghent, Belgium
[2] Queen Mary Univ London, Sch Math Sci, Mile End Rd, London E1 4NS, England
基金
英国工程与自然科学研究理事会; 奥地利科学基金会;
关键词
D O I
10.5802/crmath.78
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this note we present a notion of harmonic oscillator on the Heisenberg group H-n which forms the natural analogue of the harmonic oscillator on R-n under a few reasonable assumptions: the harmonic oscillator on H-n should be a negative sum of squares of operators related to the sub-Laplacian on H-n, essentially self-adjoint with purely discrete spectrum, and its eigenvectors should be smooth functions and form an orthonormal basis of L-2(H-n). This approach leads to a differential operator on H-n which is determined by the (stratified) Dynin-Folland Lie algebra. We provide an explicit expression for the operator as well as an asymptotic estimate for its eigenvalues.
引用
收藏
页码:609 / 614
页数:6
相关论文
共 11 条
[1]  
DYNIN AS, 1975, DOKL AKAD NAUK SSSR+, V225, P1245
[2]  
Fischer V., 2018, Heisenberg-modulation spaces at the crossroads of coorbit theory and decomposition space theory
[3]  
Folland G. B., 1994, LECT NOTES PURE APPL, V157, P121
[4]  
Folland G.B., 1989, HARMONIC ANAL PHASE, V122
[5]  
Helffer B., 1979, Commun. Partial Differ. Equ, V4, P899
[6]   MINIMUM EIGENVALUES FOR POSITIVE, ROCKLAND OPERATORS [J].
HULANICKI, A ;
JENKINS, JW ;
LUDWIG, J .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1985, 94 (04) :718-720
[7]  
Mohamed A., 1993, J. Funct. Anal., V113, P65
[8]  
Rottensteiner D., 2018, HARMONIC ANHARMONIC
[9]  
Rottensteiner D., 2014, THESIS
[10]  
Stein E.M., 1993, PRINCETON MATH SERIE, V43, pxiv+695