The GILTT solution of the advection-diffusion equation for an inhomogeneous and nonstationary PBL

被引:26
作者
Moreira, D. M. [1 ]
Vilhena, M. T.
Buske, D.
Tirabassi, T.
机构
[1] Univ Fed Rio Grande do Sul, PROMEC, Porto Alegre, RS, Brazil
[2] CNR, Inst ISAC, I-00185 Rome, Italy
关键词
GILTT; Laplace transform; atmospheric dispersion; analytical solution; time-dependent advection-diffusion equation; planetary boundary layer; air pollution modeling;
D O I
10.1016/j.atmosenv.2006.01.035
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In this work, we present an analytical solution for the nonstationary two-dimensional advection-diffusion equation to simulate the pollutant dispersion in the planetary boundary layer. In this method the advection-diffusion equation is solved by the application of the Laplace transform technique and the solution of the resulting stationary problem by the generalised integral Laplace transform technique (GILTT). We also report numerical simulations and statistical comparison with experimental data available in the literature. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3186 / 3194
页数:9
相关论文
共 50 条
[21]   Analytical model for the two-dimensional advection-diffusion equation with the logarithmic wind profile in unstable conditions [J].
D. Laaouaoucha ;
M. Farhane ;
M. Essaouini ;
O. Souhar .
International Journal of Environmental Science and Technology, 2022, 19 :6825-6832
[22]   Analytical model for the two-dimensional advection-diffusion equation with the logarithmic wind profile in unstable conditions [J].
Laaouaoucha, D. ;
Farhane, M. ;
Essaouini, M. ;
Souhar, O. .
INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY, 2022, 19 (07) :6825-6832
[23]   Comparison between two analytical solutions of advection-diffusion equation using separation technique and Hankel transform [J].
Essa, Khaled S. M. ;
Taha, H. M. .
MAUSAM, 2021, 72 (04) :905-914
[24]   Analytical Solution to One-dimensional Advection-diffusion Equation with Several Point Sources through Arbitrary Time-dependent Emission Rate Patterns [J].
Mazaheri, M. ;
Samani, J. M. V. ;
Samani, H. M. V. .
JOURNAL OF AGRICULTURAL SCIENCE AND TECHNOLOGY, 2013, 15 (06) :1231-1245
[25]   Numerical Inverse Laplace Transform Methods for Advection-Diffusion Problems [J].
Kamran, Farman Ali ;
Shah, Farman Ali ;
Aly, Wael Hosny Fouad ;
Aksoy, Hasan M. ;
Alotaibi, Fahad ;
Mahariq, Ibrahim .
SYMMETRY-BASEL, 2022, 14 (12)
[26]   Analytical Solutions of the Advection-Diffusion Equation with Variable Vertical Eddy Diffusivity and Wind Speed Using Hankel Transform [J].
Essa, Khaled S. M. ;
Shalaby, Ahmed S. ;
Ibrahim, Mahmoud A. E. ;
Mosallem, Ahmed M. .
PURE AND APPLIED GEOPHYSICS, 2020, 177 (09) :4545-4557
[27]   A Fractional Time-Space Stochastic Advection-Diffusion Equation for Modeling Atmospheric Moisture Transport at Ocean-Atmosphere Interfaces [J].
Moghaddam, Behrouz Parsa ;
Zaky, Mahmoud A. ;
Lopes, Antonio Mendes ;
Galhano, Alexandra .
FRACTAL AND FRACTIONAL, 2025, 9 (04)
[28]   One-dimensional advection-diffusion model and analytical solution for inorganic contaminant ion transport in electro-kinetic barrier [J].
Huang P. ;
Wang L. ;
Liu S. ;
Xue C. .
Yanshilixue Yu Gongcheng Xuebao/Chinese Journal of Rock Mechanics and Engineering, 2020, 39 (08) :1719-1728
[29]   A finite analytic method for solving the 2-D time-dependent advection-diffusion equation with time-invariant coefficients [J].
Lowry, T ;
Li, SG .
ADVANCES IN WATER RESOURCES, 2005, 28 (02) :117-133
[30]   A note on the solution to the diffusion equation [J].
Wang, YL .
INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, 1996, 20 (06) :443-452