The GILTT solution of the advection-diffusion equation for an inhomogeneous and nonstationary PBL

被引:26
作者
Moreira, D. M. [1 ]
Vilhena, M. T.
Buske, D.
Tirabassi, T.
机构
[1] Univ Fed Rio Grande do Sul, PROMEC, Porto Alegre, RS, Brazil
[2] CNR, Inst ISAC, I-00185 Rome, Italy
关键词
GILTT; Laplace transform; atmospheric dispersion; analytical solution; time-dependent advection-diffusion equation; planetary boundary layer; air pollution modeling;
D O I
10.1016/j.atmosenv.2006.01.035
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In this work, we present an analytical solution for the nonstationary two-dimensional advection-diffusion equation to simulate the pollutant dispersion in the planetary boundary layer. In this method the advection-diffusion equation is solved by the application of the Laplace transform technique and the solution of the resulting stationary problem by the generalised integral Laplace transform technique (GILTT). We also report numerical simulations and statistical comparison with experimental data available in the literature. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3186 / 3194
页数:9
相关论文
共 50 条
  • [1] A solution of the time-dependent advection-diffusion equation
    Tirabassi, Tiziano
    Silva, Everson J. G.
    Buske, Daniela
    Vilhena, Marco T.
    INTERNATIONAL JOURNAL OF ENVIRONMENT AND POLLUTION, 2019, 65 (1-3) : 211 - 228
  • [2] Numerical Solution of Advection-Diffusion Equation of Fractional Order Using Chebyshev Collocation Method
    Ali Shah, Farman
    Boulila, Wadii
    Koubaa, Anis
    Mlaiki, Nabil
    FRACTAL AND FRACTIONAL, 2023, 7 (10)
  • [3] Numerical solution of the advection-diffusion equation using Laplace transform finite analytical method
    Ahsan, Mahmud
    INTERNATIONAL JOURNAL OF RIVER BASIN MANAGEMENT, 2012, 10 (02) : 177 - 188
  • [4] Analytical solution of the advection-diffusion equation for a ground-level finite area source
    Park, Young-San
    Baik, Jong-Jin
    ATMOSPHERIC ENVIRONMENT, 2008, 42 (40) : 9063 - 9069
  • [5] An analytical solution of the advection-diffusion equation considering non-local turbulence closure
    D. Buske
    M. T. Vilhena
    D. M. Moreira
    T. Tirabassi
    Environmental Fluid Mechanics, 2007, 7 : 43 - 54
  • [6] An analytical solution of the advection-diffusion equation considering non-local turbulence closure
    Buske, D.
    Vilhena, M. T.
    Moreira, D. M.
    Tirabassi, T.
    ENVIRONMENTAL FLUID MECHANICS, 2007, 7 (01) : 43 - 54
  • [7] THREE-DIMENSIONAL ANALYTICAL SOLUTION OF THE ADVECTION-DIFFUSION EQUATION FOR AIR POLLUTION DISPERSION
    Farhane, M.
    Alehyane, O.
    Souhar, O.
    ANZIAM JOURNAL, 2022, 64 (01) : 40 - 53
  • [8] Semi-analytical solution of the steady three-dimensional advection-diffusion equation in the planetary boundary layer
    Costa, C. P.
    Vilhena, M. T.
    Moreira, D. M.
    Tirabassi, T.
    ATMOSPHERIC ENVIRONMENT, 2006, 40 (29) : 5659 - 5669
  • [9] Source strength determination of a tracer gas using an approximate solution to the advection-diffusion equation for microplots
    Kaharabata, SK
    Schuepp, PH
    Desjardins, RL
    ATMOSPHERIC ENVIRONMENT, 2000, 34 (15) : 2343 - 2350
  • [10] Studying the Effect of Two Analytical Solutions of Advection-Diffusion Equation on Experimental Data
    Essa, Khaled S. M.
    Taha, Hanaa Mohamed Ahmed
    PURE AND APPLIED GEOPHYSICS, 2023, 180 (06) : 2407 - 2418