NUMERICAL STUDY OF TWO-SPECIES CHEMOTAXIS MODELS

被引:31
作者
Kurganov, Alexander [1 ]
Lukacova-Medvidova, Maria [2 ]
机构
[1] Tulane Univ, Dept Math, New Orleans, LA 70118 USA
[2] Johannes Gutenberg Univ Mainz, Inst Math, D-55099 Mainz, Germany
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B | 2014年 / 19卷 / 01期
基金
美国国家科学基金会;
关键词
Two-species chemotaxis models; second-order positivity preserving finite-volume method; finite-time blow-up; HYPERBOLIC CONSERVATION-LAWS; GLOBAL EXISTENCE; CONCENTRATION REGIONS; POINT DYNAMICS; SINGULAR LIMIT; BLOW-UP; STABILITY; SYSTEM; SCHEMES; FLUX;
D O I
10.3934/dcdsb.2014.19.131
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We first conduct a comparative numerical study of two recently proposed two-species chemotaxis models. We show that different scenarios are possible: depending on the initial masses, either one or both cell densities may blow up, or a global solution may exist. In particular, our numerical results indicate answers on some open questions of possible blow up stated in [4,7]. We then introduce two regularizations of the studied models and demonstrate that their solutions are capable of developing spiky structure without blowing up.
引用
收藏
页码:131 / 152
页数:22
相关论文
共 34 条
[1]  
[Anonymous], 2003, DIFFERENTIAL INTEGRA
[2]  
[Anonymous], 1968, Amer. Math. Soc., Transl. Math. Monographs
[3]  
[Anonymous], 1998, Not. Am. Math. Soc.
[4]  
Chertock A., HIGH ORDER UNPUB
[5]   ON A CHEMOTAXIS MODEL WITH SATURATED CHEMOTACTIC FLUX [J].
Chertock, Alina ;
Kurganov, Alexander ;
Wang, Xuefeng ;
Wu, Yaping .
KINETIC AND RELATED MODELS, 2012, 5 (01) :51-95
[6]   NON-LINEAR ASPECTS OF CHEMOTAXIS [J].
CHILDRESS, S ;
PERCUS, JK .
MATHEMATICAL BIOSCIENCES, 1981, 56 (3-4) :217-237
[7]   Remarks on the blowup and global existence for a two species chemotactic Keller-Segel system in R2 [J].
Conca, Carlos ;
Espejo, Elio ;
Vilches, Karina .
EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2011, 22 :553-580
[8]  
Espejo E, 2009, ANALYSIS, V29, P317, DOI DOI 10.1524/ANLY.2009.1029
[9]  
Espejo EE, 2010, DIFFER INTEGRAL EQU, V23, P451
[10]   Sharp condition for blow-up and global existence in a two species chemotactic Keller-Segel system in R2 [J].
Espejo, Elio ;
Vilches, Karina ;
Conca, Carlos .
EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2013, 24 :297-313