Synthesis of High Aspect Ratio BaTiO3 Nanowires for High Energy Density Nanocomposite Capacitors

被引:295
作者
Tang, Haixiong [1 ]
Lin, Yirong [2 ]
Sodano, Henry A. [1 ]
机构
[1] Univ Florida, Dept Mat Sci & Engn, Gainesville, FL 32611 USA
[2] Univ Texas El Paso, Dept Mech Engn, El Paso, TX 79968 USA
基金
美国国家科学基金会;
关键词
energy storage; nanocomposite; nanowire; capacitor; BaTiO3; POLYMER NANOCOMPOSITES; STORAGE; FUTURE; SUPERCAPACITORS; NANOPARTICLES; NANOTUBES;
D O I
10.1002/aenm.201200808
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
High energy density capacitors are critically important in advanced electronic devices and power systems since they can reduce the weight, size and cost required to meet a desired application. Nanocomposites hold strong potential for increasing the performance of high power energy sources; however, the energy density of most nanocomposites is still low compared to commercial capacitors and neat polymers. Here, we develop a new synthesis method for the growth of high aspect ratio barium titanate nanowires (BaTiO3) nanowires (NWs) with high yield. High energy density nanocomposite capacitors are fabricated using surface-functionalized high aspect ratio BaTiO3 NWs in a poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) (P(VDF-TrFE-CFE)) matrix. At a 17.5% volume fraction, the nanocomposites show more than 45.3% increase in energy density above that of the pure P(VDF-TrFE-CFE) polymer (10.48 J/cc compared to 7.21 J/cc) at electric field 300 MV/m. This value is significant and exceeds those reported for the conventional polymer-ceramic nanocomposites; it is also more than seven times larger than high performance commercial polypropylene capacitor (1.2 J/cc at 640 MV/m). In addition, our nanocomposite capacitor has a maximum power density as high as 1.2 MW/cc occurring only 1.52 s after the start of discharge. The findings of this research could lead to enhanced interest in nanowires based nanocomposites due to their potential for achieving next generation energy storage devices.
引用
收藏
页码:451 / 456
页数:6
相关论文
共 33 条
[1]   Industrial applications of pulsed power technology [J].
Akiyama, Hidenori ;
Sakugawa, Takashi ;
Namihira, Takao ;
Takaki, Koichi ;
Minamitani, Yasushi ;
Shimomura, Naoyuki .
IEEE TRANSACTIONS ON DIELECTRICS AND ELECTRICAL INSULATION, 2007, 14 (05) :1051-1064
[2]   The effect of particle aspect ratio on the electroelastic properties of piezoelectric nanocomposites [J].
Andrews, C. ;
Lin, Y. ;
Sodano, H. A. .
SMART MATERIALS AND STRUCTURES, 2010, 19 (02)
[3]   Shape-controlled monocrystalline ferroelectric barium titanate nanostructures: From nanotubes and nanowires to ordered nanostructures [J].
Bao, Ningzhong ;
Shen, Liming ;
Srinivasan, Gopalan ;
Yanagisawa, Kazumichi ;
Gupta, Arunava .
JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (23) :8634-8642
[4]   Polymer Composite and Nanocomposite Dielectric Materials for Pulse Power Energy Storage [J].
Barber, Peter ;
Balasubramanian, Shiva ;
Anguchamy, Yogesh ;
Gong, Shushan ;
Wibowo, Arief ;
Gao, Hongsheng ;
Ploehn, Harry J. ;
zur Loye, Hans-Conrad .
MATERIALS, 2009, 2 (04) :1697-1733
[5]  
Callister W., 2008, MAT SCI ENG INTRO, P836
[6]   Nanostructured carbon for energy storage and conversion [J].
Candelaria, Stephanie L. ;
Shao, Yuyan ;
Zhou, Wei ;
Li, Xiaolin ;
Xiao, Jie ;
Zhang, Ji-Guang ;
Wang, Yong ;
Liu, Jun ;
Li, Jinghong ;
Cao, Guozhong .
NANO ENERGY, 2012, 1 (02) :195-220
[7]  
Cao Y, 2004, IEEE T DIELECT EL IN, V11, P797
[8]   Synthesis, functionalization and bioimaging applications of highly fluorescent carbon nanoparticles [J].
Chandra, Sourov ;
Das, Pradip ;
Bag, Sourav ;
Laha, Dipranjan ;
Pramanik, Panchanan .
NANOSCALE, 2011, 3 (04) :1533-1540
[9]   A dielectric polymer with high electric energy density and fast discharge speed [J].
Chu, Baojin ;
Zhou, Xin ;
Ren, Kailiang ;
Neese, Bret ;
Lin, Minren ;
Wang, Qing ;
Bauer, F. ;
Zhang, Q. M. .
SCIENCE, 2006, 313 (5785) :334-336
[10]   Influence of silane coupling agent on morphology and dielectric property in BaTiO3/polyvinylidene fluoride composites [J].
Dang, Zhi-Min ;
Wang, Hai-Yan ;
Xu, Hai-Ping .
APPLIED PHYSICS LETTERS, 2006, 89 (11)