Relativistic lattice Boltzmann model with improved dissipation

被引:28
作者
Mendoza, M. [1 ]
Karlin, I. [2 ]
Succi, S. [3 ,4 ]
Herrmann, H. J. [1 ,5 ]
机构
[1] ETH, Inst Bldg Mat, HIF, CH-8093 Zurich, Switzerland
[2] ETH, Dept Mech & Proc Engn, CH-8092 Zurich, Switzerland
[3] Ist Applicaz Calcolo CNR, I-00185 Rome, Italy
[4] Freiburg Inst Adv Studies, D-79104 Freiburg, Germany
[5] Univ Fed Ceara, Dept Fis, BR-60455760 Fortaleza, Ceara, Brazil
来源
PHYSICAL REVIEW D | 2013年 / 87卷 / 06期
基金
欧洲研究理事会;
关键词
EQUATION;
D O I
10.1103/PhysRevD.87.065027
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We develop a relativistic lattice Boltzmann (LB) model, providing a more accurate description of dissipative phenomena in relativistic hydrodynamics than previously available with existing LB schemes. The procedure applies to the ultrarelativistic regime, in which the kinetic energy (temperature) far exceeds the rest mass energy, although the extension to massive particles and/or low temperatures is conceptually straightforward. In order to improve the description of dissipative effects, the Maxwell-Juttner distribution is expanded in a basis of orthonormal polynomials, so as to correctly recover the third-order moment of the distribution function. In addition, a time dilatation is also applied, in order to preserve the compatibility of the scheme with a Cartesian cubic lattice. To the purpose of comparing the present LB model with previous ones, the time transformation is also applied to a lattice model which recovers terms up to second order, namely up to the energy-momentum tensor. The approach is validated through quantitative comparison between the second- and third-order schemes with Boltzmann approach multiparton scattering (the solution of the full relativistic Boltzmann equation) for moderately high viscosity and velocities, and also with previous LB models in the literature. Excellent agreement with BAMPS and more accurate results than previous relativistic lattice Boltzmann models are reported. DOI: 10.1103/PhysRevD.87.065027
引用
收藏
页数:12
相关论文
共 20 条
[1]   RELATIVISTIC RELAXATION-TIME MODEL FOR BOLTZMANN-EQUATION [J].
ANDERSON, JL ;
WITTING, HR .
PHYSICA, 1974, 74 (03) :466-488
[2]   THE LATTICE BOLTZMANN-EQUATION - THEORY AND APPLICATIONS [J].
BENZI, R ;
SUCCI, S ;
VERGASSOLA, M .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1992, 222 (03) :145-197
[3]   Relativistic Shock Waves in Viscous Gluon Matter [J].
Bouras, I. ;
Molnar, E. ;
Niemi, H. ;
Xu, Z. ;
El, A. ;
Fochler, O. ;
Greiner, C. ;
Rischke, D. H. .
PHYSICAL REVIEW LETTERS, 2009, 103 (03)
[4]  
Cercignani Carlo., 2002, RELATIVISTIC BOLTZMA, DOI [10.1007/978-3-0348-8165-4, DOI 10.1007/978-3-0348-8165-4]
[5]  
Chikatamarla S. S., 2006, PHYS REV LETT, V97
[6]   Lattices for the lattice Boltzmann method [J].
Chikatamarla, Shyam S. ;
Karlin, Iliya V. .
PHYSICAL REVIEW E, 2009, 79 (04)
[7]  
He XY, 1997, PHYS REV E, V56, P6811, DOI 10.1103/PhysRevE.56.6811
[8]   Relativistic lattice Boltzmann method for quark-gluon plasma simulations [J].
Hupp, D. ;
Mendoza, M. ;
Bouras, I. ;
Succi, S. ;
Herrmann, H. J. .
PHYSICAL REVIEW D, 2011, 84 (12)
[9]   Viscosity in strongly interacting quantum field theories from black hole physics [J].
Kovtun, PK ;
Son, DT ;
Starinets, AO .
PHYSICAL REVIEW LETTERS, 2005, 94 (11)
[10]   Lattice Boltzmann method for relativistic hydrodynamics: Issues on conservation law of particle number and discontinuities [J].
Li, Q. ;
Luo, K. H. ;
Li, X. J. .
PHYSICAL REVIEW D, 2012, 86 (08)