Temperature-dependence of the near-UV absorption of water vapor in the 290-350nm range

被引:4
作者
Wang, Zhe-Chen [1 ]
Yin, Bangsheng [2 ]
Min, Qilong [2 ]
Zhu, Lei [1 ,3 ]
机构
[1] New York State Dept Hlth, Wadsworth Ctr, Albany, NY 12201 USA
[2] SUNY Albany, Atmospher Sci Res Ctr, Albany, NY 12222 USA
[3] SUNY Albany, Dept Environm Hlth Sci, Albany, NY 12222 USA
基金
美国国家科学基金会;
关键词
Water vapor; Absorption cross-sections; Temperature dependence; Near-UV; Cavity ring-down spectroscopy; Radiative transfer modeling; CROSS-SECTIONS; CAVITY RING; SPECTROSCOPY; SPECTRA; SPECTROMETER; COEFFICIENT; OZONE; NM;
D O I
10.1016/j.jqsrt.2022.108204
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Water vapor plays a critical role in the energy balance of the Earth's atmosphere. But there are limited experimental measurements of single photon water vapor absorption spectra and absorption strengths in the near-UV region. We determined the temperature-dependent absorption cross-sections of water vapor at 1 nm increments in the 290-350 nm range by using cavity ring-down spectroscopy. Water vapor exhibited structured absorption bands in this region, with cross-sections ranging from 1.4 x 10(-25) to 6.0 x 10(-25) cm(2)/molecule at 283 K; 1.6 x 10(-25) to 8.9 x 10(-25) cm(2)/molecule at 313 K; and 1.9 x 10(-25) to 1.0 x 10(-24) cm2/molecule at 333 K. A radiative transfer model was used to evaluate atmospheric impacts of water vapor near-UV absorption using laboratory temperature-dependent cross-section data. (c) 2022 Elsevier Ltd. All rights reserved.
引用
收藏
页数:12
相关论文
共 49 条
[1]  
Anderson G.P., 1986, AFGL Atmospheric Constituent Profiles (0-120 km)
[2]   Evaluated kinetic, photochemical and heterogeneous data for atmospheric chemistry .5. IUPAC Subcommittee on Gas Kinetic Data Evaluation for Atmospheric Chemistry [J].
Atkinson, R ;
Baulch, DL ;
Cox, RA ;
Hampson, RF ;
Kerr, JA ;
Rossi, MJ ;
Troe, J .
JOURNAL OF PHYSICAL AND CHEMICAL REFERENCE DATA, 1997, 26 (03) :521-1011
[3]  
Berk A, 1989, AFGLTR890122
[4]  
Bhartia PK, 2002, ATBDOMI02 NASA, V2
[5]   A broadband cavity ringdown spectrometer for in-situ measurements of atmospheric trace gases [J].
Bitter, M ;
Ball, SM ;
Povey, IM ;
Jones, RL .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2005, 5 :2547-2560
[6]   Validation of the IASI FORLI/EUMETSAT ozone products using satellite (GOME-2), ground-based (Brewer-Dobson, SAOZ, FTIR) and ozonesonde measurements [J].
Boynard, Anne ;
Hurtmans, Daniel ;
Garane, Katerina ;
Goutail, Florence ;
Hadji-Lazaro, Juliette ;
Koukouli, Maria Elissavet ;
Wespes, Catherine ;
Vigouroux, Corinne ;
Keppens, Arno ;
Pommereau, Jean-Pierre ;
Pazmino, Andrea ;
Balis, Dimitris ;
Loyola, Diego ;
Valks, Pieter ;
Sussmann, Ralf ;
Smale, Dan ;
Coheur, Pierre-Francois ;
Clerbaux, Cathy .
ATMOSPHERIC MEASUREMENT TECHNIQUES, 2018, 11 (09) :5125-5152
[7]  
Bykov A.D., 2003, ATMOS OCEANIC OPT, V16, P912
[8]   HIGHLY EXCITED VIBRATIONAL EIGENSTATES OF NONLINEAR TRIATOMIC-MOLECULES - APPLICATION TO H2O [J].
CHOI, SE ;
LIGHT, JC .
JOURNAL OF CHEMICAL PHYSICS, 1992, 97 (10) :7031-7054
[9]   A semi-empirical potential energy surface and line list for H216O extending into the near-ultraviolet [J].
Conway, Eamon K. ;
Gordon, Iouli E. ;
Tennyson, Jonathan ;
Polyansky, Oleg L. ;
Yurchenko, Sergei N. ;
Chance, Kelly .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2020, 20 (16) :10015-10027
[10]   A highly accurate ab initio dipole moment surface for the ground electronic state of water vapour for spectra extending into the ultraviolet [J].
Conway, Eamon K. ;
Kyuberis, Aleksandra A. ;
Polyansky, Oleg L. ;
Tennyson, Jonathan ;
Zobov, Nikolai F. .
JOURNAL OF CHEMICAL PHYSICS, 2018, 149 (08)