A class of Einstein (α, β)-metrics

被引:30
|
作者
Cheng, Xinyue [1 ]
Shen, Zhongmin [2 ]
Tian, Yanfang [1 ,3 ]
机构
[1] Chongqing Univ Technol, Sch Math & Stat, Chongqing 400054, Peoples R China
[2] Indiana Univ Purdue Univ, Dept Math Sci, Indianapolis, IN 46202 USA
[3] Logist Engn Univ PLA, Chongqing 400016, Peoples R China
关键词
Sectional Curvature; Ricci Curvature; Einstein Metrics; Riemann Curvature; Finsler Space;
D O I
10.1007/s11856-012-0036-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study a special class of Finsler metrics, called (alpha, beta)-metrics, which are defined by F = alpha I center dot(beta/alpha), where alpha is a Riemannian metric and beta is a 1-form. We show that if I center dot = I center dot(s) is a polynomial in s, it is Einstein if and only if it is Ricci-flat. We also determine the Ricci-flat (alpha, beta)-metrics which are not of the type F = (alpha + E >beta)(2)/alpha.
引用
收藏
页码:221 / 249
页数:29
相关论文
共 50 条