机构:
Chongqing Univ Technol, Sch Math & Stat, Chongqing 400054, Peoples R ChinaChongqing Univ Technol, Sch Math & Stat, Chongqing 400054, Peoples R China
Cheng, Xinyue
[1
]
Shen, Zhongmin
论文数: 0引用数: 0
h-index: 0
机构:
Indiana Univ Purdue Univ, Dept Math Sci, Indianapolis, IN 46202 USAChongqing Univ Technol, Sch Math & Stat, Chongqing 400054, Peoples R China
Shen, Zhongmin
[2
]
Tian, Yanfang
论文数: 0引用数: 0
h-index: 0
机构:
Chongqing Univ Technol, Sch Math & Stat, Chongqing 400054, Peoples R China
Logist Engn Univ PLA, Chongqing 400016, Peoples R ChinaChongqing Univ Technol, Sch Math & Stat, Chongqing 400054, Peoples R China
Tian, Yanfang
[1
,3
]
机构:
[1] Chongqing Univ Technol, Sch Math & Stat, Chongqing 400054, Peoples R China
[2] Indiana Univ Purdue Univ, Dept Math Sci, Indianapolis, IN 46202 USA
[3] Logist Engn Univ PLA, Chongqing 400016, Peoples R China
Sectional Curvature;
Ricci Curvature;
Einstein Metrics;
Riemann Curvature;
Finsler Space;
D O I:
10.1007/s11856-012-0036-x
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
In this paper, we study a special class of Finsler metrics, called (alpha, beta)-metrics, which are defined by F = alpha I center dot(beta/alpha), where alpha is a Riemannian metric and beta is a 1-form. We show that if I center dot = I center dot(s) is a polynomial in s, it is Einstein if and only if it is Ricci-flat. We also determine the Ricci-flat (alpha, beta)-metrics which are not of the type F = (alpha + E >beta)(2)/alpha.
机构:
Department of Mathematics,Zhejiang University
College of Mathematics and Systems Science,Xinjiang UniversityDepartment of Mathematics,Zhejiang University
ZHANG XiaoLing
XIA QiaoLing
论文数: 0引用数: 0
h-index: 0
机构:
Department of Mathematics,Zhejiang UniversityDepartment of Mathematics,Zhejiang University