A class of Einstein (α, β)-metrics

被引:30
|
作者
Cheng, Xinyue [1 ]
Shen, Zhongmin [2 ]
Tian, Yanfang [1 ,3 ]
机构
[1] Chongqing Univ Technol, Sch Math & Stat, Chongqing 400054, Peoples R China
[2] Indiana Univ Purdue Univ, Dept Math Sci, Indianapolis, IN 46202 USA
[3] Logist Engn Univ PLA, Chongqing 400016, Peoples R China
关键词
Sectional Curvature; Ricci Curvature; Einstein Metrics; Riemann Curvature; Finsler Space;
D O I
10.1007/s11856-012-0036-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study a special class of Finsler metrics, called (alpha, beta)-metrics, which are defined by F = alpha I center dot(beta/alpha), where alpha is a Riemannian metric and beta is a 1-form. We show that if I center dot = I center dot(s) is a polynomial in s, it is Einstein if and only if it is Ricci-flat. We also determine the Ricci-flat (alpha, beta)-metrics which are not of the type F = (alpha + E >beta)(2)/alpha.
引用
收藏
页码:221 / 249
页数:29
相关论文
共 50 条
  • [1] A class of Einstein (α, β)-metrics
    Xinyue Cheng
    Zhongmin Shen
    Yanfang Tian
    Israel Journal of Mathematics, 2012, 192 : 221 - 249
  • [2] On a class of Einstein Finsler metrics
    Shen, Zhongmin
    Yu, Changtao
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2014, 25 (04)
  • [3] A class of conformally Einstein metrics
    Kapadia, D
    Sparling, G
    CLASSICAL AND QUANTUM GRAVITY, 2000, 17 (22) : 4765 - 4776
  • [4] Einstein metrics and Einstein-Randers metrics on a class of homogeneous manifolds
    Chen, Chao
    Chen, Zhiqi
    Hu, Yuwang
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2018, 15 (04)
  • [5] Einstein Riemannian metrics and Einstein-Randers metrics on a class of homogeneous manifolds
    Kang, Yifang
    Chen, Zhiqi
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2014, 107 : 86 - 91
  • [6] On a class of weakly Einstein Finsler metrics
    Shen, Zhongmin
    Yang, Guojun
    ISRAEL JOURNAL OF MATHEMATICS, 2014, 199 (02) : 773 - 790
  • [7] On a class of weakly Einstein Finsler metrics
    Zhongmin Shen
    Guojun Yang
    Israel Journal of Mathematics, 2014, 199 : 773 - 790
  • [8] On a class of weakly weighted Einstein metrics
    Shen, Zhongmin
    Zhao, Runzhong
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2022, 33 (10N11)
  • [9] On a Class of Quasi-Einstein Finsler Metrics
    Hongmei Zhu
    The Journal of Geometric Analysis, 2022, 32
  • [10] On a class of Einstein-reversible Finsler metrics
    Yang, Guojun
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2018, 60 : 80 - 103