Graphene/MnO2-based composites reduced via different chemical agents for supercapacitors

被引:148
作者
Kim, Myeongjin [1 ]
Hwang, Yongseon [1 ]
Kim, Jooheon [1 ]
机构
[1] Chung Ang Univ, Sch Chem Engn & Mat Sci, Seoul 156756, South Korea
基金
新加坡国家研究基金会;
关键词
Supercapacitor; Graphene/MnO2; Nanoneedle; Reducing effect; Electronic conductive channel; Hydrazine hydrate; MANGANESE-DIOXIDE; ELECTROCHEMICAL CAPACITANCE; SODIUM-BOROHYDRIDE; CARBON NANOTUBES; GRAPHENE OXIDE; PERFORMANCE; ELECTRODE; MNO2; REDUCTION; DEPOSITION;
D O I
10.1016/j.jpowsour.2013.03.146
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Graphene/MnO2 composites are synthesized by the chemical reduction of GO/MnO2 using both hydrazine hydrate (H-RGO/MnO2) and sodium borohydride (S-RGO/MnO2) as reducing agents. The morphology and microstructure of the as-prepared composites are characterized by X-ray diffractometry, field-emission scanning electron microscopy, Raman microscopy, thermogravimetric analysis and X-ray photoelectron spectroscopy. Characterizations indicate that MnO2 is successfully formed on the GO surface and GO is reduced successfully by using both hydrazine hydrate and sodium borohydride as reducing agents. H-RGO/MnO2 shows higher electrical conductivity than that of S-RGO/MnO2 since it has a lower concentration of oxygen-containing functional groups. The capacitive properties of the H-RGO/MnO2 and S-RGO/MnO2 electrodes are measured using cyclic voltammetry and galvanostatic charge/discharge tests and electrochemical impedance spectroscopy in a three-electrode experimental setup using a 1 M Na2SO4 aqueous solution as the electrolyte. The H-RGO/MnO2 electrode displays a specific capacitance as high as 327.5 F g(-1) at 10 mV s(-1), which is higher than that of the S-RGO/MnO2 electrode (278.6 F g(-1)). It is anticipate that the formation of nanoneedle structures of MnO2 on graphene oxide surfaces after the hydrazine reduction procedure is a promising fabrication method for supercapacitor electrodes. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:225 / 233
页数:9
相关论文
共 49 条
[11]   A Three-Dimensional Carbon Nanotube/Graphene Sandwich and Its Application as Electrode in Supercapacitors [J].
Fan, Zhuangjun ;
Yan, Jun ;
Zhi, Linjie ;
Zhang, Qiang ;
Wei, Tong ;
Feng, Jing ;
Zhang, Milin ;
Qian, Weizhong ;
Wei, Fei .
ADVANCED MATERIALS, 2010, 22 (33) :3723-+
[12]   Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond [J].
Ferrari, AC ;
Robertson, J .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2004, 362 (1824) :2477-2512
[13]   Incorporation of homogeneous, nanoscale MnO2 within ultraporous carbon structures via self-limiting electroless deposition:: Implications for electrochemical capacitors [J].
Fischer, Anne E. ;
Pettigrew, Katherine A. ;
Rolison, Debra R. ;
Stroud, Rhonda M. ;
Long, Jeffrey W. .
NANO LETTERS, 2007, 7 (02) :281-286
[14]   Microstructures and spectroscopic properties of cryptomelane-type manganese dioxide nanofibers [J].
Gao, Tao ;
Glerup, Marianne ;
Krumeich, Frank ;
Nesper, Reinhard ;
Fjellvag, Helmer ;
Norby, Poul .
JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (34) :13134-13140
[15]   Design and Synthesis of Hierarchical MnO2 Nanospheres/Carbon Nanotubes/Conducting Polymer Ternary Composite for High Performance Electrochemical Electrodes [J].
Hou, Ye ;
Cheng, Yingwen ;
Hobson, Tyler ;
Liu, Jie .
NANO LETTERS, 2010, 10 (07) :2727-2733
[16]   Effects of reduction process and carbon nanotube content on the supercapacitive performance of flexible graphene oxide papers [J].
Huang, Zhen-Dong ;
Zhang, Biao ;
Liang, Rui ;
Zheng, Qing-Bin ;
Oh, Sei Woon ;
Lin, Xiu-Yi ;
Yousefi, Nariman ;
Kim, Jang-Kyo .
CARBON, 2012, 50 (11) :4239-4251
[17]  
Irn H. G, 2012, CARBON, V50, P5429
[18]   Nanoscale microelectrochemical cells on carbon nanotubes [J].
Jin, Xianbo ;
Zhou, Wuzong ;
Zhang, Shengwen ;
Chen, George Z. .
SMALL, 2007, 3 (09) :1513-1517
[19]  
Karina C.G., 2005, ADV FUNCT MATER, V15, P1125
[20]  
Kishner N., 1911, Journal of the Russian Chemical Society, V43, P582