Fractional Integrals of Fractional Fourier Transform for Integrable Boehmians

被引:3
|
作者
Singh, Abhishek [1 ,2 ]
Banerji, P. K. [3 ]
机构
[1] Banaras Hindu Univ, DST CIMS, Varanasi, Uttar Pradesh, India
[2] Amity Univ, AIAS, Noida, Uttar Pradesh, India
[3] JN Vyas Univ, Dept Math, Jodhpur, Rajasthan, India
关键词
Fourier transform; Fractional Fourier transform; Fractional derivatives and integrals; Calculus of Mikusinski and other operational calculi; Distribution spaces; Boehmians;
D O I
10.1007/s40010-016-0329-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
With an abridged introductory note on the fractional Fourier transform, this paper attempts to study the same for integrable Boehmians with regard to fractional integrals. Some relevant properties are also established.
引用
收藏
页码:49 / 53
页数:5
相关论文
共 50 条
  • [41] Fractional Fourier transform of Lorentz beams
    Zhou Guo-Quan
    CHINESE PHYSICS B, 2009, 18 (07) : 2779 - 2784
  • [42] A sparse approximation for fractional Fourier transform
    Yang, Fang
    Chen, Jiecheng
    Qian, Tao
    Zhao, Jiman
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2024, 50 (03)
  • [43] A reformulation of weighted fractional Fourier transform
    Zhao, Tieyu
    Yuan, Lin
    Li, Mingwei
    Chi, Yingying
    DIGITAL SIGNAL PROCESSING, 2020, 104
  • [44] A unified framework for the fractional Fourier transform
    Cariolaro, G
    Erseghe, T
    Kraniauskas, P
    Laurenti, N
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1998, 46 (12) : 3206 - 3219
  • [45] Image encryption and the fractional Fourier transform
    Hennelly, BM
    Sheridan, JT
    OPTIK, 2003, 114 (06): : 251 - 265
  • [46] The Fractional Fourier Transform and Harmonic Oscillation
    M. Alper Kutay
    Haldun M. Ozaktas
    Nonlinear Dynamics, 2002, 29 : 157 - 172
  • [47] A novel discrete fractional Fourier transform
    Tao, R
    Ping, XJ
    Shen, Y
    Zhao, XH
    2001 CIE INTERNATIONAL CONFERENCE ON RADAR PROCEEDINGS, 2001, : 1027 - 1030
  • [48] THE FINITE FIELD FRACTIONAL FOURIER TRANSFORM
    Lima, Juliano B.
    Campello de Souza, Ricardo M.
    2010 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2010, : 3670 - 3673
  • [49] Adaptive harmonic fractional Fourier transform
    Zhang, F
    Chen, YQ
    Bi, G
    IEEE SIGNAL PROCESSING LETTERS, 1999, 6 (11) : 281 - 283
  • [50] Unlimited Sampling Theorem Based on Fractional Fourier Transform
    Zhao, Hui
    Li, Bing-Zhao
    FRACTAL AND FRACTIONAL, 2023, 7 (04)