Fractional Integrals of Fractional Fourier Transform for Integrable Boehmians

被引:3
|
作者
Singh, Abhishek [1 ,2 ]
Banerji, P. K. [3 ]
机构
[1] Banaras Hindu Univ, DST CIMS, Varanasi, Uttar Pradesh, India
[2] Amity Univ, AIAS, Noida, Uttar Pradesh, India
[3] JN Vyas Univ, Dept Math, Jodhpur, Rajasthan, India
关键词
Fourier transform; Fractional Fourier transform; Fractional derivatives and integrals; Calculus of Mikusinski and other operational calculi; Distribution spaces; Boehmians;
D O I
10.1007/s40010-016-0329-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
With an abridged introductory note on the fractional Fourier transform, this paper attempts to study the same for integrable Boehmians with regard to fractional integrals. Some relevant properties are also established.
引用
收藏
页码:49 / 53
页数:5
相关论文
共 50 条
  • [31] A study on fractional differential equations using the fractional Fourier transform
    Porpattama Hammachukiattikul
    Arusamy Mohanapriya
    Anumanthappa Ganesh
    Grienggrai Rajchakit
    Vediyappan Govindan
    Nallappan Gunasekaran
    Chee Peng Lim
    Advances in Difference Equations, 2020
  • [32] Sampling of fractional bandlimited signals associated with fractional Fourier transform
    Wei, Deyun
    Ran, Qiwen
    Li, Yuanmin
    OPTIK, 2012, 123 (02): : 137 - 139
  • [33] The fractional Fourier transform and harmonic oscillation
    Kutay, MA
    Ozaktas, HM
    NONLINEAR DYNAMICS, 2002, 29 (1-4) : 157 - 172
  • [34] Angle resolution of fractional Fourier transform
    Zhang, Feng
    Tao, Ran
    Wang, Yue
    2014 XXXITH URSI GENERAL ASSEMBLY AND SCIENTIFIC SYMPOSIUM (URSI GASS), 2014,
  • [35] An Optical Fractional Fourier Transform System
    CHEN Jian nong Department of Physics
    Journal of Shanghai University, 2000, (04) : 292 - 294
  • [36] Speckle photography and the fractional Fourier transform
    Patten, R
    Sheridan, JT
    Larkin, A
    OPTICAL ENGINEERING, 2001, 40 (08) : 1438 - 1440
  • [37] Comprehensive Survey on Fractional Fourier Transform
    Zhang, Yudong
    Wang, Shuihua
    Yang, Jian-Fei
    Zhang, Zheng
    Phillips, Preetha
    Sun, Ping
    Yan, Jie
    FUNDAMENTA INFORMATICAE, 2017, 151 (1-4) : 1 - 48
  • [38] Fractional Fourier transform and geometric quantization
    Chmielowiec, Witold
    Kijowski, Jerzy
    JOURNAL OF GEOMETRY AND PHYSICS, 2012, 62 (06) : 1433 - 1450
  • [39] Speckle correlation and the Fractional Fourier transform
    Kelly, DP
    Hennelly, BM
    Sheridan, JT
    OPTICAL INFORMATION SYSTEMS II, 2004, 5557 : 255 - 266
  • [40] Fractional Fourier transform of Lorentz beams
    周国泉
    ChinesePhysicsB, 2009, 18 (07) : 2779 - 2784