Fractional Integrals of Fractional Fourier Transform for Integrable Boehmians

被引:3
|
作者
Singh, Abhishek [1 ,2 ]
Banerji, P. K. [3 ]
机构
[1] Banaras Hindu Univ, DST CIMS, Varanasi, Uttar Pradesh, India
[2] Amity Univ, AIAS, Noida, Uttar Pradesh, India
[3] JN Vyas Univ, Dept Math, Jodhpur, Rajasthan, India
关键词
Fourier transform; Fractional Fourier transform; Fractional derivatives and integrals; Calculus of Mikusinski and other operational calculi; Distribution spaces; Boehmians;
D O I
10.1007/s40010-016-0329-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
With an abridged introductory note on the fractional Fourier transform, this paper attempts to study the same for integrable Boehmians with regard to fractional integrals. Some relevant properties are also established.
引用
收藏
页码:49 / 53
页数:5
相关论文
共 50 条
  • [21] Comments on the complete generalized fractional Fourier transform
    Zheng, Liying
    Shi, Daming
    OPTICS COMMUNICATIONS, 2010, 283 (06) : 917 - 919
  • [22] Fractional Fourier Transform Meets Transformer Encoder
    Sahinuc, Furkan
    Koc, Aykut
    IEEE SIGNAL PROCESSING LETTERS, 2022, 29 : 2258 - 2262
  • [23] Fractional Fourier Transform in Time Series Prediction
    Koc, Emirhan
    Koc, Aykut
    IEEE SIGNAL PROCESSING LETTERS, 2022, 29 : 2542 - 2546
  • [24] Optical OFDM based on the fractional Fourier transform
    Cincotti, Gabriella
    NEXT-GENERATION OPTICAL COMMUNICATION: COMPONENTS, SUB-SYSTEMS, AND SYSTEMS, 2012, 8284
  • [25] Hilbert transform associated with the fractional Fourier transform
    Zayed, AI
    IEEE SIGNAL PROCESSING LETTERS, 1998, 5 (08) : 206 - 208
  • [26] The generalized continuous wavelet transform associated with the fractional Fourier transform
    Prasad, Akhilesh
    Manna, Santanu
    Mahato, Ashutosh
    Singh, V. K.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 259 : 660 - 671
  • [27] Joint transform correlator with fractional Fourier transform
    Jin, SI
    Lee, SY
    OPTICS COMMUNICATIONS, 2002, 207 (1-6) : 161 - 168
  • [28] Unitary and Hermitian fractional operators and their relation to the fractional Fourier transform
    Akay, O
    Boudreaux-Bartels, GF
    IEEE SIGNAL PROCESSING LETTERS, 1998, 5 (12) : 312 - 314
  • [29] The properties of fractional correlation peak based on fractional Fourier transform
    Zhu, BH
    Han, L
    Xie, HW
    Liu, ST
    ICEMI'99: FOURTH INTERNATIONAL CONFERENCE ON ELECTRONIC MEASUREMENT & INSTRUMENTS, VOLS 1 AND 2, CONFERENCE PROCEEDINGS, 1999, : 868 - 872
  • [30] A study on fractional differential equations using the fractional Fourier transform
    Hammachukiattikul, Porpattama
    Mohanapriya, Arusamy
    Ganesh, Anumanthappa
    Rajchakit, Grienggrai
    Govindan, Vediyappan
    Gunasekaran, Nallappan
    Lim, Chee Peng
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)