Non-invasive identification of turbo-generator parameters from actual transient network data

被引:11
作者
Hutchison, Greame [1 ]
Zahawi, Bashar [2 ]
Harmer, Keith [1 ]
Gadoue, Shady [3 ,4 ]
Giaouris, Damian [5 ]
机构
[1] Parsons Brinckerhoff, Newcastle Upon Tyne NE4 7YQ, Tyne & Wear, England
[2] Khalifa Univ, Dept Elect & Comp Engn, Abu Dhabi 127788, U Arab Emirates
[3] Newcastle Univ, Sch Elect & Elect Engn, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England
[4] Univ Alexandria, Fac Engn, Dept Elect Engn, Alexandria 21544, Egypt
[5] Ctr Res & Technol Hellas, Chem Proc Engn Res Inst, Thessaloniki 57001, Greece
关键词
PARTICLE SWARM OPTIMIZATION; SYNCHRONOUS MACHINE; MODEL;
D O I
10.1049/iet-gtd.2014.0481
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Synchronous machines are the most widely used form of generators in electrical power systems. Identifying the parameters of these generators in a non-invasive way is very challenging because of the inherent non-linearity of power station performance. This study proposes a parameter identification method using a stochastic optimisation algorithm that is capable of identifying generator, exciter and turbine parameters using actual network data. An eighth order generator/turbine model is used in conjunction with the measured data to develop the objective function for optimisation. The effectiveness of the proposed method for the identification of turbo-generator parameters is demonstrated using data from a recorded network transient on a 178 MVA steam turbine generator connected to the UK's national grid.
引用
收藏
页码:1129 / 1136
页数:8
相关论文
共 25 条
[1]  
[Anonymous], 1973, IEEE T POWER AP SYST, VPA92, P1904, DOI 10.1109/TPAS.1973.293570
[2]   Parameter Estimation of a Synchronous Generator Using a Sine Cardinal Perturbation and Mixed Stochastic-Deterministic Algorithms [J].
Arjona, M. A. ;
Cisneros-Gonzalez, M. ;
Hernandez, C. .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2011, 58 (02) :486-493
[3]   Multiphysics Modeling of a Permanent Magnet Synchronous Machine by Using Lumped Models [J].
Bracikowski, Nicolas ;
Hecquet, Michel ;
Brochet, Pascal ;
Shirinskii, Sergey V. .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2012, 59 (06) :2426-2437
[4]  
Clerc M., 2006, Particle Swarm Optimization
[5]   VALIDATION OF TURBOGENERATOR STABILITY MODELS BY COMPARISONS WITH POWER SYSTEM TESTS [J].
DANDENO, PL ;
KUNDUR, P ;
PORAY, AT ;
COULTES, ME .
IEEE TRANSACTIONS ON POWER APPARATUS AND SYSTEMS, 1981, 100 (04) :1637-1645
[6]   Particle swarm optimization: Basic concepts, variants and applications in power systems [J].
del Valle, Yamille ;
Venayagamoorthy, Ganesh Kumar ;
Mohagheghi, Salman ;
Hernandez, Jean-Carlos ;
Harley, Ronald G. .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2008, 12 (02) :171-195
[7]   DYNAMIC-MODELS FOR FOSSIL FUELED STEAM UNITS IN POWER-SYSTEM STUDIES [J].
DEMELLO, FP .
IEEE TRANSACTIONS ON POWER SYSTEMS, 1991, 6 (02) :753-761
[8]   Particle Swarm Design Optimization of Transverse Flux Linear Motor for Weight Reduction and Improvement of Thrust Force [J].
Hasanien, Hany M. .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2011, 58 (09) :4048-4056
[9]   Online Synchronous Machine Parameter Extraction From Small-Signal Injection Techniques [J].
Huang, Jing ;
Corzine, Keith A. ;
Belkhayat, Mohamed .
IEEE TRANSACTIONS ON ENERGY CONVERSION, 2009, 24 (01) :43-51
[10]   A Deterministic Particle Swarm Optimization Maximum Power Point Tracker for Photovoltaic System Under Partial Shading Condition [J].
Ishaque, Kashif ;
Salam, Zainal .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2013, 60 (08) :3195-3206