Additivity of handle number and Morse-Novikov number of a-small knots

被引:3
作者
Manjarrez-Gutierrez, Fabiola [1 ]
机构
[1] Ctr Invest Matemat, Guanajuato, Mexico
关键词
Circular thin position; Handle number; Morse-Novikov number; Heegaard splittings;
D O I
10.1016/j.topol.2012.10.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A knot is an a-small knot if its exterior does not contain closed incompressible surfaces disjoint from some incompressible Seifert surface for the knot. Using circular thin position for knots we prove that the handle number is additive under the connected sum of two a-small knots. As a consequence the Morse-Novikov number turns out to be additive under the connected sum of two a-small knots. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:117 / 125
页数:9
相关论文
共 11 条
  • [1] REDUCING HEEGAARD-SPLITTINGS
    CASSON, AJ
    GORDON, CM
    [J]. TOPOLOGY AND ITS APPLICATIONS, 1987, 27 (03) : 275 - 283
  • [2] ADDITIVITY OF CIRCULAR WIDTH
    Eudave-Munoz, M.
    Manjarrez-Gutierrez, F.
    [J]. JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2012, 21 (08)
  • [3] GABAI D, 1983, J DIFFER GEOM, V18, P445
  • [4] GODA H, 1993, OSAKA J MATH, V30, P63
  • [5] GODA H, 1992, OSAKA J MATH, V29, P21
  • [6] GODA H, 2006, FLOER HOMOLOGY GAUGE, P71
  • [7] Circular thin position for knots in S3
    Manjarrez-Gutierrez, Fabiola
    [J]. ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2009, 9 (01): : 429 - 454
  • [8] Pajitnov A., 2002, ST PETERSBURG MATH J, V13, P417
  • [9] Scharlemann M., 2003, New Studies Advanced Mathematics, V3, P25
  • [10] Scharlemann M., 1994, Contemporary Mathematics, P231