Least-Squares Support Vector Machines for the identification of Wiener-Hammerstein systems

被引:45
作者
Falck, Tillmann [1 ,2 ]
Dreesen, Philippe [1 ,2 ]
De Brabanter, Kris [1 ,2 ]
Pelckmans, Kristiaan [3 ]
De Moor, Bart [1 ,2 ]
Suykens, Johan A. K. [1 ,2 ]
机构
[1] Katholieke Univ Leuven, Dept Elect Engn ESAT SCD, B-3001 Louvain, Belgium
[2] Katholieke Univ Leuven, IBBT Future Hlth Dept, B-3001 Louvain, Belgium
[3] Uppsala Univ, Dept Informat Technol, Div Syst & Control, SE-75105 Uppsala, Sweden
基金
瑞典研究理事会;
关键词
Nonlinear system identification; LS-SVMs; Kernel-based models; Overparameterization; Large-scale data processing; NON-LINEAR SYSTEMS; MODELS; UNIQUENESS; ALGORITHM;
D O I
10.1016/j.conengprac.2012.05.006
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper considers the identification of Wiener-Hammerstein systems using Least-Squares Support Vector Machines based models. The power of fully black-box NARX-type models is evaluated and compared with models incorporating information about the structure of the systems. For the NARX models it is shown how to extend the kernel-based estimator to large data sets. For the structured model the emphasis is on preserving the convexity of the estimation problem through a suitable relaxation of the original problem. To develop an empirical understanding of the implications of the different model design choices, all considered models are compared on an artificial system under a number of different experimental conditions. The obtained results are then validated on the Wiener-Hammerstein benchmark data set and the final models are presented. It is illustrated that black-box models are a suitable technique for the identification of Wiener-Hammerstein systems. The incorporation of structural information results in significant improvements in modeling performance. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1165 / 1174
页数:10
相关论文
共 39 条
[21]  
Greblicki W, 2008, NONPARAMETRIC SYSTEM IDENTIFICATION, P1, DOI 10.1017/CBO9780511536687
[22]   Wiener-Hammerstein systems modeling using diagonal Volterra kernels coefficients [J].
Kibangou, AY ;
Favier, G .
IEEE SIGNAL PROCESSING LETTERS, 2006, 13 (06) :381-384
[23]   INPUT OUTPUT PARAMETRIC MODELS FOR NON-LINEAR SYSTEMS .1. DETERMINISTIC NON-LINEAR SYSTEMS [J].
LEONTARITIS, IJ ;
BILLINGS, SA .
INTERNATIONAL JOURNAL OF CONTROL, 1985, 41 (02) :303-328
[24]   Learning long-term dependencies in NARX recurrent neural networks [J].
Lin, TN ;
Horne, BG ;
Tino, P ;
Giles, CL .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 1996, 7 (06) :1329-1338
[25]   Regressor and structure selection in NARX models using a structured ANOVA approach [J].
Lind, Ingela ;
Ljung, Lennart .
AUTOMATICA, 2008, 44 (02) :383-395
[26]   A New Kernel-Based Approach for NonlinearSystem Identification [J].
Pillonetto, Gianluigi ;
Quang, Minh Ha ;
Chiuso, Alessandro .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2011, 56 (12) :2819-2847
[27]   An identification algorithm for polynomial NARX models based on simulation error minimization [J].
Piroddi, L ;
Spinelli, W .
INTERNATIONAL JOURNAL OF CONTROL, 2003, 76 (17) :1767-1781
[28]  
Rasmussen CE, 2005, ADAPT COMPUT MACH LE, P1
[29]   Nonlinear system identification via direct weight optimization [J].
Roll, J ;
Nazin, A ;
Ljung, L .
AUTOMATICA, 2005, 41 (03) :475-490
[30]  
Scholkopf B, 2002, Encyclopedia of Biostatistics