Least-Squares Support Vector Machines for the identification of Wiener-Hammerstein systems

被引:45
作者
Falck, Tillmann [1 ,2 ]
Dreesen, Philippe [1 ,2 ]
De Brabanter, Kris [1 ,2 ]
Pelckmans, Kristiaan [3 ]
De Moor, Bart [1 ,2 ]
Suykens, Johan A. K. [1 ,2 ]
机构
[1] Katholieke Univ Leuven, Dept Elect Engn ESAT SCD, B-3001 Louvain, Belgium
[2] Katholieke Univ Leuven, IBBT Future Hlth Dept, B-3001 Louvain, Belgium
[3] Uppsala Univ, Dept Informat Technol, Div Syst & Control, SE-75105 Uppsala, Sweden
基金
瑞典研究理事会;
关键词
Nonlinear system identification; LS-SVMs; Kernel-based models; Overparameterization; Large-scale data processing; NON-LINEAR SYSTEMS; MODELS; UNIQUENESS; ALGORITHM;
D O I
10.1016/j.conengprac.2012.05.006
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper considers the identification of Wiener-Hammerstein systems using Least-Squares Support Vector Machines based models. The power of fully black-box NARX-type models is evaluated and compared with models incorporating information about the structure of the systems. For the NARX models it is shown how to extend the kernel-based estimator to large data sets. For the structured model the emphasis is on preserving the convexity of the estimation problem through a suitable relaxation of the original problem. To develop an empirical understanding of the implications of the different model design choices, all considered models are compared on an artificial system under a number of different experimental conditions. The obtained results are then validated on the Wiener-Hammerstein benchmark data set and the final models are presented. It is illustrated that black-box models are a suitable technique for the identification of Wiener-Hammerstein systems. The incorporation of structural information results in significant improvements in modeling performance. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1165 / 1174
页数:10
相关论文
共 39 条
[1]  
[Anonymous], 2009, IFAC Proceedings Volumes, V42, P317, DOI [10.3182/20091021-3-JP-2009.00060, DOI 10.3182/20090706-3-FR-2004.00137]
[2]   Recursive direct weight optimization in nonlinear system identification: A minimal probability approach [J].
Bai, Er-Wei ;
Liu, Yun .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2007, 52 (07) :1218-1231
[3]   An optimal two-stage identification algorithm for Hammerstein-Wiener nonlinear systems [J].
Bai, EW .
AUTOMATICA, 1998, 34 (03) :333-338
[4]   Analysis of stochastic gradient identification of Wiener-Hammerstein systems for nonlinearities with hermite polynomial expansions [J].
Bershad, NJ ;
Celka, P ;
McLaughlin, S .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2001, 49 (05) :1060-1072
[5]   IDENTIFICATION OF A CLASS OF NON-LINEAR SYSTEMS USING CORRELATION ANALYSIS [J].
BILLINGS, SA ;
FAKHOURI, SY .
PROCEEDINGS OF THE INSTITUTION OF ELECTRICAL ENGINEERS-LONDON, 1978, 125 (07) :691-697
[6]   RECURSIVE-IDENTIFICATION METHOD FOR MISO WIENER-HAMMERSTEIN MODEL [J].
BOUTAYEB, M ;
DAROUACH, M .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1995, 40 (02) :287-291
[7]   UNIQUENESS OF A BASIC NON-LINEAR STRUCTURE [J].
BOYD, S ;
CHUA, LO .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1983, 30 (09) :648-651
[8]   UNIQUENESS OF CIRCUITS AND SYSTEMS CONTAINING ONE NONLINEARITY [J].
BOYD, SP ;
CHUA, LO .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1985, 30 (07) :674-680
[9]   NONITERATIVE METHOD FOR IDENTIFICATION USING HAMMERSTEIN MODEL [J].
CHANG, FHI ;
LUUS, R .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1971, AC16 (05) :464-+
[10]   Optimized fixed-size kernel models for large data sets [J].
De Brabanter, K. ;
De Brabanter, J. ;
Suykens, J. A. K. ;
De Moor, B. .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2010, 54 (06) :1484-1504