The driven oscillator in the photon-number probability representation of quantum mechanics

被引:1
作者
Lemeshevskiy, Dmitry B. [1 ]
Man'ko, Vladimir I. [2 ]
机构
[1] State Univ, Moscow Inst Phys & Technol, Dolgoprudnyi 141700, Moscow Region, Russia
[2] Russian Acad Sci, PN Lebedev Phys Inst, Moscow 119991, Russia
基金
俄罗斯基础研究基金会;
关键词
photon statistics; photon-number tomography; Laguerre polynomials; evolution equation; quasiprobability propagators;
D O I
10.1007/s10946-012-9280-0
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We study the evolution of the driven harmonic oscillator in the probability representation of quantum mechanics. We use the photon-number tomographic-probability-distribution function to describe the quantum states of the system. We give a general review of the photon-number tomographic framework, including a discussion on the connection with other representations of quantum mechanics. We find tomograms of coherent states as well as excited states of the harmonic oscillator in an explicit form. We discuss the time evolution of the photon-number tomograms and transforms of the propagators for different representations of quantum mechanics. We obtain the propagator for the photon-number tomographic-distribution function for the case of the driven oscillator in an explicit form.
引用
收藏
页码:255 / 268
页数:14
相关论文
共 25 条
[1]  
Abramowitz M., 1972, Handbook on Mathematical Functions with Formulas, Graphs, and Mathematical Tables
[2]   Generalized tomographic maps [J].
Asorey, M. ;
Facchi, P. ;
Man'ko, V. I. ;
Marmo, G. ;
Pascazio, S. ;
Sudarshan, E. C. G. .
PHYSICAL REVIEW A, 2008, 77 (04)
[3]   Direct probing of quantum phase space by photon counting [J].
Banaszek, K ;
Wodkiewicz, K .
PHYSICAL REVIEW LETTERS, 1996, 76 (23) :4344-4347
[4]   A TOMOGRAPHIC APPROACH TO WIGNER FUNCTION [J].
BERTRAND, J ;
BERTRAND, P .
FOUNDATIONS OF PHYSICS, 1987, 17 (04) :397-405
[5]   ORDERED EXPANSIONS IN BOSON AMPLITUDE OPERATORS [J].
CAHILL, KE ;
GLAUBER, RJ .
PHYSICAL REVIEW, 1969, 177 (5P1) :1857-+
[6]   Reconstructing the density operator by using generalized field quadratures [J].
DAriano, GM ;
Mancini, S ;
Manko, VI ;
Tombesi, P .
QUANTUM AND SEMICLASSICAL OPTICS, 1996, 8 (05) :1017-1027
[7]  
DODONOV VV, 1987, P PN LEBEDEV PHYS I, V183
[8]  
Erdelyi A., 1940, COMPOS MATH, V7, P340
[9]   MATHEMATICAL FORMULATION OF THE QUANTUM THEORY OF ELECTROMAGNETIC INTERACTION [J].
FEYNMAN, RP .
PHYSICAL REVIEW, 1950, 80 (03) :440-457
[10]  
Gradshteyn IS, 2000, Table of Integrals, Series, and Products, V6th