Vertical structures of PM10 and PM 2.5 and their dynamical character in low atmosphere in Beijing urban areas

被引:35
作者
Ding, GA [1 ]
Chan, CY
Gao, ZQ
Yao, WQ
Li, YS
Cheng, XH
Meng, ZY
Yu, HQ
Wong, K
Wang, SF
Miao, QJ
机构
[1] Chinese Acad Meteorol Sci, Ctr Atmospher Watch, Beijing 100081, Peoples R China
[2] Chinese Acad Meteorol Sci, Serv CMA, Beijing 100081, Peoples R China
[3] Chinese Acad Meteorol Sci, CMA Key Lab Atmospher Chem, Beijing 100081, Peoples R China
[4] Hong Kong Polytech Univ, Dept Civil & Struct Engn, Hong Kong, Hong Kong, Peoples R China
[5] China Meteorol Adm, Nanional Meteorol Ctr, Beijing 100081, Peoples R China
来源
SCIENCE IN CHINA SERIES D-EARTH SCIENCES | 2005年 / 48卷
关键词
PM10; PM2.5; mass concentration; vertical structure; dynamical character; footprint analysis;
D O I
10.1360/05yd0031
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
The vertical structures and their dynamical character of PM2.5 and PM10 over Beijing urban areas are revealed using the 1 min mean continuous mass concentration data of PM2.5 and PM10 at 8, 100, and 320 m heights of the meteorological observation tower of 325 m at Institute of Atmospheric Physics, Chinese Academy of Sciences (IAP CAS tower hereafter) on 10-26 August, 2003, as well as the daily mean mass concentration data of PM2.5 and PM10 and the continuous data of CO and NO2 at 8, 100 (low layer), 200 (middle layer), and 320 m (high layer) heights, in combination with the same period meteorological field observation data of the meteorological tower. The vertical distributions of aerosols observed on IAP CAS tower in Beijing can be roughly divided into two patterns: gradually and rapidly decreasing patterns, i.e. the vertical distribution of aerosols in calm weather or on pollution day belongs to the gradually decreasing pattern, while one on clean day or weak cold air day belongs to the rapidly decreasing pattern. The vertical distributive characters of aerosols were closely related with the dynamical/thermal structure and turbulence character of the atmosphere boundary layer. On the clean day, the low layer PM2.5 and PM10 concentrations were close to those at 8 m height, while the concentrations rapidly decreased at the high layer, and their values were only one half of those at 8 m, especially, the concentration of PM2.5 dropped even more. On the clean day, there existed stronger turbulence below 150 m, aerosols were well mixed, but blocked by the more stronger inversion layer aloft, and meanwhile, at various heights, especially in the high layer, the horizontal wind speed was larger, resulting in the rapid decrease of aerosol concentration, i.e. resulting in the obvious vertical difference of aerosol concentrations between the low and high layers. On the pollution day, the concentrations of PM2.5 and PM10 at the low, middle, and high layers dropped successively by, on average, about 10% for each layer in comparison with those at 8 m height. On pollution days, in company with the low wind speed, there existed two shallow inversion layers in the boundary layer, but aerosols might be, to some extent, mixed below the inversion layer, therefore, on the pollution day the concentrations of PM2.5 and PM10 dropped with height slowly; and the observational results also show that the concentrations at 320 m height were obviously high under SW and SE winds, but at other heights, the concentrations were not correlated with wind directions. The computational results of footprint analysis suggest that this was due to the fact that the 320 m height was impacted by the pollutants transfer of southerly flow from the southern peripheral heavier polluted areas, such as Baoding, and Shijiazhuang of Hebei Province, Tianjin, and Shandong Province, etc., while the low layer was only affected by Beijing's local pollution source. The computational results of power spectra and periods preliminarily reveal that under the condition of calm weather, the periods of PM10 concentration at various heights of the tower were on the order of minutes, while in cases of larger wind speed, the concentrations of PM2.5 and PM10 at 320 m height not only had the short periods of minute-order, but also the longer periods of hour order. Consistent with the conclusion previously drawn by Dinget al., that air pollutants at different heights and at different sites in Beijing had the character of "in-phase" variation, was also observed for the diurnal variation and mean diurnal variation of PM2.5 and PM10 at various heights of the tower in this experiment, again confirming the "in-phase" temporal/spatial distributive character of air pollutants in the urban canopy of Beijing. The gentle double-peak character of the mean diurnal variation of PM2.5 and PM10 was closely related with the evident/similar diurnal variation of turbulent momentum fluxes, sensible heat fluxes, and turbulent kinetic energy at various heights in the urban canopy. Besides, under the condition of calm weather, the concentration of PM2.5 and PM10 declined with height slowly, it was 90% of 8 m concentration at the low layer, a little lesser than 90% at the middle layer, and 80% at the high layer, respectively. Under the condition of weak cold air weather, the concentration remarkably dropped with height, it was 70% of 8 m concentration at the low layer, and 20%-30% at the middle and high layers, especially the concentration of PM2.5 was even lower.
引用
收藏
页码:38 / 54
页数:17
相关论文
共 28 条
[1]  
Baumbach G., 1993, Meteorologische Zeitschrift, V2, P178
[2]   Characteristics of carbonaceous aerosol in Pearl River Delta Region, China during 2001 winter period [J].
Cao, JJ ;
Lee, SC ;
Ho, KF ;
Zhang, XY ;
Zou, SC ;
Fung, K ;
Chow, JC ;
Watson, JG .
ATMOSPHERIC ENVIRONMENT, 2003, 37 (11) :1451-1460
[3]   Carbonaceous aerosol in urban and rural European atmospheres: estimation of secondary organic carbon concentrations [J].
Castro, LM ;
Pio, CA ;
Harrison, RM ;
Smith, DJT .
ATMOSPHERIC ENVIRONMENT, 1999, 33 (17) :2771-2781
[4]   Measurements of PM10 and PM2.5 particle concentrations in Athens, Greece [J].
Chaloulakou, A ;
Kassomenos, P ;
Spyrellis, N ;
Demokritou, P ;
Koutrakis, P .
ATMOSPHERIC ENVIRONMENT, 2003, 37 (05) :649-660
[5]   Vertical dispersion of suspended particulates in urban area of Hong Kong [J].
Chan, LY ;
Kwok, WS .
ATMOSPHERIC ENVIRONMENT, 2000, 34 (26) :4403-4412
[6]   Exposure level of carbon monoxide and respirable suspended particulate in public transportation modes while commuting in urban, area of Guangzhou, China [J].
Chan, LY ;
Lau, WL ;
Zou, SC ;
Cao, ZX ;
Lai, SC .
ATMOSPHERIC ENVIRONMENT, 2002, 36 (38) :5831-5840
[7]  
CHOW JC, 1994, ATMOS ENVIRON, V28, P377
[8]   The characteristics of carbonaceous species and their sources in PM2.5 in Beijing [J].
Dan, M ;
Zhuang, GS ;
Li, XX ;
Tao, HR ;
Zhuang, YH .
ATMOSPHERIC ENVIRONMENT, 2004, 38 (21) :3443-3452
[9]   Airborne particulate study in five cities of China [J].
Davis, BL ;
Jixiang, G .
ATMOSPHERIC ENVIRONMENT, 2000, 34 (17) :2703-2711
[10]  
DING G, 2002, J APPL METEOROLOGICA, V13, P82