Bismuth mediated defect engineering of epitaxial graphene on SiC(0001)

被引:13
作者
Hu, Tingwei [1 ,2 ]
Ma, Dayan [1 ]
Fang, Qinglong [1 ]
Zhang, Peng [3 ]
Liu, Xiangtai [1 ]
Wei, Ran [4 ]
Pan, Yi [1 ]
Xu, Kewei [1 ]
Ma, Fei [1 ,2 ]
机构
[1] Xi An Jiao Tong Univ, State Key Lab Mech Behav Mat, Xian 710049, Shaanxi, Peoples R China
[2] Xi An Jiao Tong Univ, Collaborat Innovat Ctr Suzhou Nano Sci & Technol, Suzhou 215123, Jiangsu, Peoples R China
[3] Army Armament Dept, Mil Representat Off Xian Area, Xian 710032, Shaanxi, Peoples R China
[4] Zhengzhou Univ, Sch Mat Sci & Engn, Zhengzhou 450001, Henan, Peoples R China
基金
国家重点研发计划; 中国博士后科学基金; 中国国家自然科学基金;
关键词
Epitaxial graphene (EG); Defect engineering; Scanning tunneling microscopy/spectroscopy; STANDING WAVES; FUNCTIONALIZATION; SCATTERING; PRESSURE; SURFACE; EDGES;
D O I
10.1016/j.carbon.2019.02.014
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Structural defects are commonly undesirable in materials, however, atomic-level defect engineering is promising to improve the electronic, mechanical and chemical properties of graphene, if the density and types of defects could be well controlled. Herein, bismuth-mediated defect engineering method for epitaxial graphene (EG) grown on SiC(0001) is demonstrated. It is found that single defects and defect clusters could be facilitated by evaporating Bi atoms on SiC(0001) substrate before the standard EG preparation and, Bi atoms could be thoroughly cleaned away from the EG and the unwanted doping effects of Bi will be avoided by post-annealing at higher temperature. Scanning tunneling microscopy/spectroscopy characterization reveals the atomic structures, the electronic states and the Fermi level shift of flower-like, tube-like and point defects. This study sheds light on the metal-mediated formation of defects in graphene, and provides a practical defect engineering method. (c) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:313 / 319
页数:7
相关论文
共 56 条
[1]   Defect-Induced Supercollision Cooling of Photoexcited Carriers in Graphene [J].
Alencar, Thonimar V. ;
Silva, Mychel G. ;
Malard, Leandro M. ;
de Paula, Ana M. .
NANO LETTERS, 2014, 14 (10) :5621-5624
[2]   Adsorption of Mn atom on pristine and defected graphene: a density functional theory study [J].
Anithaa, V. S. ;
Shankar, R. ;
Vijayakumar, S. .
JOURNAL OF MOLECULAR MODELING, 2017, 23 (04)
[3]   Adsorption Site of Gas Molecules on Defective Armchair Graphene Nanoribbon Formed Through Ion Bombardment [J].
Auzar, Zuriana ;
Johari, Zaharah ;
Sakina, S. H. ;
Alias, N. Ezaila .
JOURNAL OF ELECTRONIC MATERIALS, 2018, 47 (02) :1208-1217
[4]   Improving low-energy boron/nitrogen ion implantation in graphene by ion bombardment at oblique angles [J].
Bai, Zhitong ;
Zhang, Lin ;
Liu, Ling .
NANOSCALE, 2016, 8 (16) :8761-8772
[5]  
Banhart F, 2011, ACS NANO, V5, P26, DOI [10.1021/nn102598m, 10.1016/B978-0-08-102053-1.00005-3]
[6]   Vacancy clusters as entry ports for cesium intercalation in graphite [J].
Buettner, Michael ;
Choudhury, Pabitra ;
Johnson, J. Karl ;
Yates, John T., Jr. .
CARBON, 2011, 49 (12) :3937-3952
[7]   Quasiparticle interference in unconventional 2D systems [J].
Chen, Lan ;
Cheng, Peng ;
Wu, Kehui .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2017, 29 (10)
[8]   Preparation of SiC/Ge/graphene heterostructure on 4H-SiC(0001) [J].
Chu, Qing ;
Li, Lianbi ;
Zhu, Changjun ;
Zang, Yuan ;
Lin, Shenghuang ;
Han, Yuling .
MATERIALS LETTERS, 2018, 211 :133-137
[9]   Grain boundary loops in graphene [J].
Cockayne, Eric ;
Rutter, Gregory M. ;
Guisinger, Nathan P. ;
Crain, Jason N. ;
First, Phillip N. ;
Stroscio, Joseph A. .
PHYSICAL REVIEW B, 2011, 83 (19)
[10]   Covalent Functionalization by Cycloaddition Reactions of Pristine Defect-Free Graphene [J].
Daukiya, Lakshya ;
Mattioli, Cristina ;
Aubel, Dominique ;
Hajjar-Garreau, Samar ;
Vonau, Francois ;
Denys, Emmanuel ;
Reiter, Guenter ;
Fransson, Jonas ;
Perrin, Elsa ;
Bocquet, Marie-Laure ;
Bena, Cristina ;
Gourdon, Andre ;
Simon, Laurent .
ACS NANO, 2017, 11 (01) :627-634