Regurgitation Quantification Using 3D PISA in Volume Echocardiography

被引:0
作者
Grady, Leo [1 ]
Datta, Saurabh [2 ]
Kutter, Oliver [1 ]
Duong, Christophe
Wein, Wolfgang [3 ]
Little, Stephen H. [4 ]
Igo, Stephen R. [4 ]
Liu, Shizhen [5 ]
Vanna, Mani [5 ]
机构
[1] Siemens Corp Res, Princeton, NJ USA
[2] Siemens Healthcare, Ultrasound Business Unit, Mountain View, CA USA
[3] White Lion Technol AG, Munich, Germany
[4] Methodist DeBakey Heart Vasc Ctr, Houston, TX USA
[5] Ohio State Univ, Columbus, OH USA
来源
MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION, MICCAI 2011, PT III | 2011年 / 6893卷
关键词
SEGMENTATION;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We present the first system for measurement of proximal isovelocity surface area (PISA) on a 3D ultrasound acquisition using modified ultrasound hardware, volumetric image segmentation and a simple efficient workflow. Accurate measurement of the PISA in 3D flow through a valve is an emerging method for quantitatively assessing cardiac valve regurgitation and function. Current state of the art protocols for assessing regurgitant flow require laborious and time consuming user interaction with the data, where a precise execution is crucial for an accurate diagnosis. We propose a new improved 3D PISA workflow that is initialized interactively with two points, followed by fully automatic segmentation of the valve annulus and isovelocity surface area computation. Our system is first validated against several in vitro phantoms to verify the calculations of surface area, orifice area and regurgitant flow. Finally, we use our system to compare orifice area calculations obtained from in vivo patient imaging measurements to an independent measurement and then use our system to successfully classify patients into mild-moderate regurgitation and moderate-severe regurgitation categories.
引用
收藏
页码:512 / +
页数:2
相关论文
共 12 条
  • [1] Broad-beam spectral Doppler sonification of the vena contracta using matrix-array technology - A new solution for semi-automated quantification of mitral regurgitant flow volume and orifice area
    Buck, T
    Plicht, B
    Hunold, P
    Mucci, RA
    Erbel, R
    Levine, RA
    [J]. JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2005, 45 (05) : 770 - 779
  • [2] DeGroff C., 1998, CIRC, V97
  • [3] Timing of mitral valve surgery
    Enriquez-Sarano, M
    [J]. HEART, 2002, 87 (01) : 79 - 85
  • [4] Random walks for image segmentation
    Grady, Leo
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2006, 28 (11) : 1768 - 1783
  • [5] Three-dimensional echocardlography - The benefits of the additional dimension
    Lang, Roberto M.
    Mor-Avi, Victor
    Sugeng, Lissa
    Nieman, Petra S.
    Salm, David J.
    [J]. JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2006, 48 (10) : 2053 - 2069
  • [6] Three-dimensional ultrasound imaging model of mitral valve regurgitation:: Design and evaluation
    Little, Stephen H.
    Igo, Stephen R.
    McCulloch, Marti
    Hartley, Craig J.
    Nose, Yukihiko
    Zoghbi, William A.
    [J]. ULTRASOUND IN MEDICINE AND BIOLOGY, 2008, 34 (04) : 647 - 654
  • [7] Matsumura Y., 2008, AHJ, P155
  • [8] Direct Measurement of Proximal Isovelocity Surface Area by Real-Time Three-Dimensional Color Doppler for Quantitation of Aortic Regurgitant Volume: An In Vitro Validation
    Pirat, Bahar
    Little, Stephen H.
    Igo, Stephen R.
    McCulloch, Marti
    Nose, Yukihiko
    Hartley, Craig J.
    Zoghbi, William A.
    [J]. JOURNAL OF THE AMERICAN SOCIETY OF ECHOCARDIOGRAPHY, 2009, 22 (03) : 306 - 313
  • [9] Mitral Annulus Segmentation From 3D Ultrasound Using Graph Cuts
    Schneider, Robert J.
    Perrin, Douglas P.
    Vasilyev, Nikolay V.
    Marx, Gerald R.
    del Nido, Pedro J.
    Howe, Robert D.
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2010, 29 (09) : 1676 - 1687
  • [10] Singaraju D., 2008, P CVPR