Hardy spaces associated with a pair of commuting operators

被引:8
|
作者
Cao, Jun [1 ]
Fu, Zunwei [2 ]
Jiang, Renjin [1 ]
Yang, Dachun [1 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Minist Educ, Lab Math & Complex Syst, Beijing 100875, Peoples R China
[2] Linyi Univ, Dept Math, Linyi 276005, Peoples R China
基金
高等学校博士学科点专项科研基金; 中国国家自然科学基金;
关键词
Hardy space; functional calculus; off-diagonal estimate; Riesz transform; higher order elliptic operator; H-INFINITY-CALCULUS; FUNCTIONAL-CALCULUS; ELLIPTIC-OPERATORS; INHOMOGENEOUS DIRICHLET; SECTORIAL OPERATORS; SMOOTH DOMAIN; L-P; BMO; SUMS;
D O I
10.1515/forum-2013-0103
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let L-1, L-2 be a pair of one-to-one commuting sectorial operators such that each L-i for i is an element of {1, 2} satisfies the m(i) order L-2 off-diagonal estimates and m(1) >= m(2) > 0. Let H-Li(p) (R-n), i is an element of { 1; 2}, and H-L1+(L) over tilde2(p) (R-n) be the Hardy spaces associated, respectively, to the operators L-i and L-1 +(L) over tilde (2), where (L) over tilde (2) := L-2(m1/m2) 2 is a fractional power of L-2. In this paper, the authors give out some real-variable properties of these Hardy spaces. More precisely, the authors first establish the bounded joint H-infinity functional calculus in these Hardy spaces and prove that the abstract Riesz transform D-mi (L-1 + L-2) (-1/2) is bounded from H-Li(p) (R-n) to the classical Hardy space H-p (R-n) for all p is an element of (n/n+m(i) ,1], where i is an element of {1,2}, Moreover, for all p is an element of(0, 1], the authors show that H-L1+(L) over tilde2(p) (R-n) = H-L1(p) (R-n) + H-L2(p) (R-n) and give a sufficient condition to guarantee H-L1(p) (R-n) subset of H-L2(p) (R-n).
引用
收藏
页码:2775 / 2824
页数:50
相关论文
共 50 条
  • [1] Maximal function characterizations of Hardy spaces associated to homogeneous higher order elliptic operators
    Cao, Jun
    Mayboroda, Svitlana
    Yang, Dachun
    FORUM MATHEMATICUM, 2016, 28 (05) : 823 - 856
  • [2] Local Hardy spaces associated with inhomogeneous higher order elliptic operators
    Cao, Jun
    Mayboroda, Svitlana
    Yang, Dachun
    ANALYSIS AND APPLICATIONS, 2017, 15 (02) : 137 - 224
  • [3] WEAK HARDY SPACES WHLp(Rn) ASSOCIATED TO OPERATORS SATISFYING k-DAVIES-GAFFNEY ESTIMATES
    Cao, Jun
    Chang, Der-Chen
    Wu, Huoxiong
    Yang, Dachun
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2015, 16 (07) : 1205 - 1255
  • [4] Boundedness of Generalized Riesz Transforms on Orlicz-Hardy Spaces Associated to Operators
    Cao, Jun
    Chang, Der-Chen
    Yang, Dachun
    Yang, Sibei
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2013, 76 (02) : 225 - 283
  • [5] Variable Hardy spaces on spaces of homogeneous type and applications to variable Hardy spaces associated with elliptic operators having Robin boundary conditions on Lipschitz domains
    Liu, Xiong
    Wang, Wenhua
    MATHEMATISCHE NACHRICHTEN, 2025, : 1370 - 1440
  • [6] Characterizations of Hardy spaces associated to higher order elliptic operators
    Deng, Qingquan
    Ding, Yong
    Yao, Xiaohua
    JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 263 (03) : 604 - 674
  • [7] Musielak-Orlicz-Hardy Spaces Associated with Operators and Their Applications
    Yang, Dachun
    Yang, Sibei
    JOURNAL OF GEOMETRIC ANALYSIS, 2014, 24 (01) : 495 - 570
  • [8] Hardy spaces HLpRn) associated with operators satisfying k-Davies-Gaffney estimates
    Cao Jun
    Yang DaChun
    SCIENCE CHINA-MATHEMATICS, 2012, 55 (07) : 1403 - 1440
  • [9] Endpoint boundedness of Riesz transforms on Hardy spaces associated with operators
    Cao, Jun
    Yang, Dachun
    Yang, Sibei
    REVISTA MATEMATICA COMPLUTENSE, 2013, 26 (01): : 99 - 114
  • [10] Riesz transforms associated to Schrodinger operators on weighted Hardy spaces
    Song, Liang
    Yan, Lixin
    JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 259 (06) : 1466 - 1490