Conduction Mechanism of Li10GeP2S12-type Lithium Superionic Conductors in a Li-Sn-Si-P-S System

被引:25
作者
Inagaki, Makoto [1 ]
Suzuki, Kota [1 ,2 ,3 ,4 ]
Hori, Satoshi [3 ]
Yoshino, Kazuhiro [2 ]
Matsui, Naoki [2 ]
Yonemura, Masao [5 ]
Hirayama, Masaaki [1 ,2 ,3 ]
Kanno, Ryoji [1 ,2 ,3 ]
机构
[1] Tokyo Inst Technol, Interdisciplinary Grad Sch Sci & Engn, Dept Elect Chem, Midori Ku, 4259 Nagatsuta, Yokohama, Kanagawa 2268502, Japan
[2] Tokyo Inst Technol, Sch Mat & Chem Technol, Dept Chem Sci & Engn, Midori Ku, 4259 Nagatsuta, Yokohama, Kanagawa 2268502, Japan
[3] Tokyo Inst Technol, Inst Innovat Res, All Solid State Battery Unit, Midori Ku, 4259 Nagatsuta, Yokohama, Kanagawa 2268503, Japan
[4] Japan Sci & Technol Agcy JST, Precursory Res Embryon Sci & Technol PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 3320012, Japan
[5] High Energy Accelerator Res Org KEK, Inst Mat Struct Sci, Neutron Sci Lab KENS, 203-1 Shirakata, Tokai, Ibaraki 3191106, Japan
基金
日本科学技术振兴机构; 日本学术振兴会;
关键词
DIFFUSION;
D O I
10.1021/acs.chemmater.9b00743
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Crystal structures of Li10GeP2S12 (LGPS)-type Li10+delta[SnySi1-y](1+delta)P2-delta S12 (Li4-x[SnySi1-y](1-x)PxS4) solid electrolytes were analyzed by Rietveld refinement using neutron diffraction data. Maximum entropy method analysis was performed to visualize the distribution of lithium along the c-axis via the Li1-Li3 sites, which indicated one-dimensional (1D) lithium diffusion for all the examined compositions. The Li10.35Sn0.27Si1.08P1.65S12 (Li3.45Sn0.09Si0.36P0.55S4) (delta = 0.35, x = 0.55, y = 0.2) system, which had the highest ionic conductivity in Li-Sn-Si-P-S system, exhibited an additional lithium diffusion pathway in the ab-plane through the Li1 and Li4 sites. High ionic conductivity (>10 mS cm(-1)) was achieved in the Sn-Si derivatives owing to the formation of three-dimensional (3D) ion diffusion channels. Comparison of the conductivity and related crystal structural parameters revealed the requirements for fast lithium diffusion along the c-axis and 3D lithium diffusion in the LGPS-type crystal structure. Large atomic displacement of the Li1 site, a large S3-S3 distance, a large bottleneck size, and small differences in Li1-Li4 distances are important for 1D and 3D lithium diffusion, respectively.
引用
收藏
页码:3485 / 3490
页数:6
相关论文
共 21 条
[1]   Promises, Challenges, and Recent Progress of Inorganic Solid-State Electrolytes for All-Solid-State Lithium Batteries [J].
Gao, Zhonghui ;
Sun, Huabin ;
Fu, Lin ;
Ye, Fangliang ;
Zhang, Yi ;
Luo, Wei ;
Huang, Yunhui .
ADVANCED MATERIALS, 2018, 30 (17)
[2]   Origin of fast ion diffusion in super-ionic conductors [J].
He, Xingfeng ;
Zhu, Yizhou ;
Mo, Yifei .
NATURE COMMUNICATIONS, 2017, 8
[3]   Structure-property relationships in lithium superionic conductors having a Li10GeP2S12-type structure [J].
Hori, Satoshi ;
Taminato, Sou ;
Suzuki, Kota ;
Hirayama, Masaaki ;
Kato, Yuki ;
Kanno, Ryoji .
ACTA CRYSTALLOGRAPHICA SECTION B-STRUCTURAL SCIENCE CRYSTAL ENGINEERING AND MATERIALS, 2015, 71 :727-736
[4]   Synthesis, structure, and ionic conductivity of solid solution, Li10+δM1+δP2-δS12 (M = Si, Sn) [J].
Hori, Satoshi ;
Suzuki, Kota ;
Hirayama, Masaaki ;
Kato, Yuki ;
Saito, Toshiya ;
Yonemura, Masao ;
Kanno, Ryoji .
FARADAY DISCUSSIONS, 2014, 176 :83-94
[5]  
Ishikawa Y., 2014, TXB Z CODE POWDER DI
[6]  
Ishikawa Y., ICANS 21 J PARC
[7]  
Izumi F., 2011, IOP Conference Series: Materials Science and Engineering, V18, DOI 10.1088/1757-899X/18/2/022001
[8]  
Kamaya N, 2011, NAT MATER, V10, P682, DOI [10.1038/nmat3066, 10.1038/NMAT3066]
[9]   RECHARGEABLE ALL SOLID-STATE CELL WITH HIGH COPPER-ION CONDUCTOR AND COPPER CHEVREL PHASE [J].
KANNO, R ;
TAKEDA, Y ;
OHYA, M ;
YAMAMOTO, O .
MATERIALS RESEARCH BULLETIN, 1987, 22 (09) :1283-1290
[10]   All-Solid-State Batteries with Thick Electrode Configurations [J].
Kato, Yuki ;
Shiotani, Shinya ;
Morita, Keisuke ;
Suzuki, Kota ;
Hirayama, Masaaki ;
Kanno, Ryoji .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2018, 9 (03) :607-613