Rapid discrimination of multiple myeloma patients by artificial neural networks coupled with mass spectrometry of peripheral blood plasma

被引:23
作者
Deulofeu, Meritxell [1 ,2 ,3 ]
Kolarova, Lenka [4 ]
Salvado, Victoria [5 ]
Maria Pena-Mendez, Eladia [6 ]
Almasi, Martina [7 ]
Stork, Martin [8 ]
Pour, Ludek [8 ]
Boadas-Vaello, Pere [2 ,3 ]
Sevcikova, Sabina [9 ]
Havel, Josef [4 ,10 ]
Vanhara, Petr [1 ,10 ]
机构
[1] Masaryk Univ, Dept Histol & Embryol, Fac Med, Brno, Czech Republic
[2] Univ Girona, Dept Med Sci, Res Grp Clin Anat Embryol & Neurosci NEOMA, Girona, Spain
[3] Univ Girona, Expt Neurophysiol & Clin Anat NE&AC 2017 SGR 0127, Dept Med Sci, Girona, Spain
[4] Masaryk Univ, Dept Chem, Fac Sci, Brno, Czech Republic
[5] Univ Girona, Dept Chem, Fac Sci, Girona, Spain
[6] Univ La Laguna, Div Analyt Chem, Dept Chem, Fac Sci, San Cristobal la Laguna, Spain
[7] Univ Hosp Brno, Dept Clin Hematol, Brno, Czech Republic
[8] Univ Hosp Brno, Dept Internal Med Hematol & Oncol, Brno, Czech Republic
[9] Masaryk Univ, Dept Pathol Physiol, Babak Myeloma Grp, Fac Med, Brno, Czech Republic
[10] St Annes Univ Hosp, Int Clin Res Ctr, Brno, Czech Republic
关键词
SERUM; BIOMARKERS; IDENTIFICATION; DIAGNOSIS; CRITERIA; MODEL;
D O I
10.1038/s41598-019-44215-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Multiple myeloma (MM) is a highly heterogeneous disease of malignant plasma cells. Diagnosis and monitoring of MM patients is based on bone marrow biopsies and detection of abnormal immunoglobulin in serum and/or urine. However, biopsies have a single-site bias; thus, new diagnostic tests and early detection strategies are needed. Matrix-Assisted Laser Desorption/Ionization Time-of Flight Mass Spectrometry (MALDI-TOF MS) is a powerful method that found its applications in clinical diagnostics. Artificial intelligence approaches, such as Artificial Neural Networks (ANNs), can handle non-linear data and provide prediction and classification of variables in multidimensional datasets. In this study, we used MALDI-TOF MS to acquire low mass profiles of peripheral blood plasma obtained from MM patients and healthy donors. Informative patterns in mass spectra served as inputs for ANN that specifically predicted MM samples with high sensitivity (100%), specificity (95%) and accuracy (98%). Thus, mass spectrometry coupled with ANN can provide a minimally invasive approach for MM diagnostics.
引用
收藏
页数:7
相关论文
共 32 条
  • [1] Artificial neural networks in medical diagnosis
    Amato, Filippo
    Lopez, Alberto
    Pena-Mendez, Eladia Maria
    Vanhara, Petr
    Hampl, Ales
    Havel, Josef
    [J]. JOURNAL OF APPLIED BIOMEDICINE, 2013, 11 (02) : 47 - 58
  • [2] Attaelmannan M, 2000, CLIN CHEM, V46, P1230
  • [3] A survey of artificial neural network training tools
    Baptista, Dario
    Morgado-Dias, Fernando
    [J]. NEURAL COMPUTING & APPLICATIONS, 2013, 23 (3-4) : 609 - 615
  • [4] Artificial neural networks: fundamentals, computing, design, and application
    Basheer, IA
    Hajmeer, M
    [J]. JOURNAL OF MICROBIOLOGICAL METHODS, 2000, 43 (01) : 3 - 31
  • [5] Biomarkers that discriminate multiple myeloma patients with or without skeletal involvement detected using SELDI-TOF mass spectrometry and statistical and machine learning tools
    Bhattacharyya, Sudeepa
    Epstein, Joshua
    Suva, Larry J.
    [J]. DISEASE MARKERS, 2006, 22 (04) : 245 - 255
  • [6] Multiple myeloma
    Dimopoulos, M. A.
    Terpos, E.
    [J]. ANNALS OF ONCOLOGY, 2010, 21 : 143 - 150
  • [7] Identification of proteins found to be significantly altered when comparing the serum proteome from Multiple Myeloma patients with varying degrees of bone disease
    Dowling, Paul
    Hayes, Catriona
    Ting, Kay Reen
    Hameed, Abdul
    Meiller, Justine
    Mitsiades, Constantine
    Anderson, Kenneth C.
    Clynes, Martin
    Clarke, Colin
    Richardson, Paul
    O'Gorman, Peter
    [J]. BMC GENOMICS, 2014, 15
  • [8] MALDIquant: a versatile R package for the analysis of mass spectrometry data
    Gibb, Sebastian
    Strimmer, Korbinian
    [J]. BIOINFORMATICS, 2012, 28 (17) : 2270 - 2271
  • [9] The Early Detection Research Network surface-enhanced laser desorption and ionization prostate cancer detection study: a study in biomarker validation in genitourinary oncology
    Grizzle, WE
    Semmes, OJ
    Basler, J
    Izbicka, E
    Feng, ZD
    Kagan, J
    Adam, BL
    Troyer, D
    Srivastava, S
    Thornquist, M
    Zhang, Z
    Thompson, IM
    [J]. UROLOGIC ONCOLOGY-SEMINARS AND ORIGINAL INVESTIGATIONS, 2004, 22 (04) : 337 - 343
  • [10] Design and rationale of FOCUS (PX-171-011): A randomized, open-label, phase 3 study of carfilzomib versus best supportive care regimen in patients with relapsed and refractory multiple myeloma (R/R MM)
    Hajek, Roman
    Bryce, Richard
    Ro, Sunhee
    Klencke, Barbara
    Ludwig, Heinz
    [J]. BMC CANCER, 2012, 12