XeUS: A second-generation automated open-source batch-mode clinical-scale hyperpolarizer

被引:22
作者
Birchall, Jonathan R. [1 ]
Irwin, Robert K. [2 ]
Nikolaou, Panayiotis [3 ]
Coffey, Aaron M. [4 ]
Kidd, Bryce E. [5 ]
Murphy, Megan [5 ]
Molway, Michael [5 ]
Bales, Liana B. [5 ]
Ranta, Kaili [5 ]
Barlow, Michael J. [2 ]
Goodson, Boyd M. [5 ,6 ]
Rosen, Matthew S. [7 ,8 ]
Chekmenev, Eduard Y. [1 ,9 ]
机构
[1] Wayne State Univ, Karmanos Canc Inst KCI, Dept Chem, Integrat Biosci Ibio, Detroit, MI 48202 USA
[2] Univ Nottingham, Sir Peter Mansfield Imaging Ctr, Nottingham NG7 2RD, England
[3] XeUS Technol LTD, CY-2312 Nicosia, Cyprus
[4] Vanderbilt Univ, Dept Radiol, Inst Imaging Sci VUIIS, Nashville, TN 37232 USA
[5] Southern Illinois Univ, Dept Chem & Biochem, Carbondale, IL 62901 USA
[6] Southern Illinois Univ, Mat Technol Ctr, Carbondale, IL 62901 USA
[7] Massachusetts Gen Hosp, Athinoula A Martinos Ctr Biomed Imaging, Boston, MA 02129 USA
[8] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[9] Russian Acad Sci, Leninskiy Prospekt 14, Moscow 119991, Russia
关键词
NMR; MRI; Hyperpolarization; SEOP; Xenon; Instrumentation; SOURCE XE-129 HYPERPOLARIZER; SPIN-POLARIZED XE-129; OPTICAL-PUMPING CELLS; LASER-DIODE ARRAYS; MAGNETIC-RESONANCE; HEALTHY-VOLUNTEERS; NUCLEAR-POLARIZATION; EXCHANGE; NMR; XENON;
D O I
10.1016/j.jmr.2020.106813
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
We present a second-generation open-source automated batch-mode Xe-129 hyperpolarizer (XeUS GEN-2), designed for clinical-scale hyperpolarized (HP) Xe-129 production via spin-exchange optical pumping (SEOP) in the regimes of high Xe density (0.66-2.5 atm partial pressure) and resonant photon flux (similar to 170 W, Delta lambda = 0.154 nm FWHM), without the need for cryo-collection typically employed by continuous-flow hyperpolarizers. An Arduino micro-controller was used for hyperpolarizer operation. Processing open-source software was employed to program a custom graphical user interface (GUI), capable of remote automation. The Arduino Integrated Development Environment (IDE) was used to design a variety of customized automation sequences such as temperature ramping, NMR signal acquisition, and SEOP cell refilling for increased reliability. A polycarbonate 3D-printed oven equipped with a thermoelectric cooler/heater provides thermal stability for SEOP for both binary (Xe/N-2) and ternary (He-4-containing) SEOP cell gas mixtures. Quantitative studies of the Xe-129 hyperpolarization process demonstrate that near-unity polarization can be achieved in a 0.5 L SEOP cell. For example, %P-Xe of 93.2 +/- 2.9% is achieved at 0.66 atm Xe pressure with polarization build-up rate constant gamma(SEOP) = 0.040 +/- 0.005 min(-1), giving a max dose equivalent approximate to 0.11 L/h 100% hyperpolarized, 100% enriched Xe-129; %P-Xe of 72.6 +/- 1.4% is achieved at 1.75 atm Xe pressure with gamma(SEOP) of 0.041 +/- 0.001 min(-1), yielding a corresponding max dose equivalent of 0.27 L/h. Quality assurance studies on this device have demonstrated the potential to refill SEOP cells hundreds of times without significant losses in performance, with average %P-Xe = 71.7%, (standard deviation sigma(P) = 1.52%) and mean polarization lifetime T-1 = 90.5 min, (standard deviation sigma(T) = 10.3 min) over the first similar to 200 gas mixture refills, with sufficient performance maintained across a further similar to 700 refills. These findings highlight numerous technological developments and have significant translational relevance for efficient production of gaseous HP Xe-129 contrast agents for use in clinical imaging and bio-sensing techniques. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:15
相关论文
共 74 条
[1]  
ALBERT MS, 1994, NATURE, V370, P199, DOI 10.1038/370199a0
[2]   Depolarization of nuclear spin polarized 129Xe gas by dark rubidium during spin-exchange optical pumping [J].
Antonacci, M. A. ;
Burant, Alex ;
Wagner, Wolfgang ;
Branca, Rosa T. .
JOURNAL OF MAGNETIC RESONANCE, 2017, 279 :60-67
[3]   Direct detection of brown adipose tissue thermogenesis in UCP1-/- mice by hyperpolarized 129Xe MR thermometry [J].
Antonacci, Michael A. ;
McHugh, Christian ;
Kelley, Michele ;
McCallister, Andrew ;
Degan, Simone ;
Branca, Rosa T. .
SCIENTIFIC REPORTS, 2019, 9 (1)
[4]   Dynamic Nuclear Polarization Polarizer for Sterile Use Intent [J].
Ardenkjaer-Larsen, Jan H. ;
Leach, Andrew M. ;
Clarke, Neil ;
Urbahn, John ;
Anderson, Denise ;
Skloss, Timothy W. .
NMR IN BIOMEDICINE, 2011, 24 (08) :927-932
[5]   On the present and future of dissolution-DNP [J].
Ardenkjaer-Larsen, Jan Henrik .
JOURNAL OF MAGNETIC RESONANCE, 2016, 264 :3-12
[6]   Increase in signal-to-noise ratio of >10,000 times in liquid-state NMR [J].
Ardenkjaer-Larsen, JH ;
Fridlund, B ;
Gram, A ;
Hansson, G ;
Hansson, L ;
Lerche, MH ;
Servin, R ;
Thaning, M ;
Golman, K .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (18) :10158-10163
[7]   Frequency-narrowed diode array bar [J].
Babcock, E ;
Chann, B ;
Nelson, IA ;
Walker, TG .
APPLIED OPTICS, 2005, 44 (15) :3098-3104
[8]   Alkali-metal-atom polarization imaging in high-pressure optical-pumping cells [J].
Baranga, AB ;
Appelt, S ;
Erickson, CJ ;
Young, AR ;
Happer, W .
PHYSICAL REVIEW A, 1998, 58 (03) :2282-2294
[9]   NEW COIL SYSTEMS FOR THE PRODUCTION OF UNIFORM MAGNETIC FIELDS [J].
BARKER, JR .
JOURNAL OF SCIENTIFIC INSTRUMENTS AND OF PHYSICS IN INDUSTRY, 1949, 26 (08) :273-275
[10]   NMR Hyperpolarization Techniques of Gases [J].
Barskiy, Danila A. ;
Coffey, Aaron M. ;
Nikolaou, Panayiotis ;
Mikhaylov, Dmitry M. ;
Goodson, Boyd M. ;
Branca, Rosa T. ;
Lu, George J. ;
Shapiro, Mikhail G. ;
Telkki, Ville-Veikko ;
Zhivonitko, Vladimir V. ;
Koptyug, Igor V. ;
Salnikov, Oleg G. ;
Kovtunov, Kirill V. ;
Bukhtiyarov, Valerii I. ;
Rosen, Matthew S. ;
Barlow, Michael J. ;
Safavi, Shahideh ;
Hall, Ian P. ;
Schroeder, Leif ;
Chekmenev, Eduard Y. .
CHEMISTRY-A EUROPEAN JOURNAL, 2017, 23 (04) :725-751