Hydration of Ca-montmorillonite at basin conditions:: A Monte Carlo molecular simulation

被引:0
作者
Monsalvo, R
de Pablo, L
Chávez, ML
机构
[1] Univ Nacl Autonoma Mexico, Fac Quim, Mexico City 04510, DF, Mexico
[2] Univ Nacl Autonoma Mexico, Inst Geol, Mexico City 04510, DF, Mexico
来源
REVISTA MEXICANA DE CIENCIAS GEOLOGICAS | 2006年 / 23卷 / 01期
关键词
montmorillonite; Ca-montmorillonite; hydration; simulation; Monte Carlo; stability;
D O I
暂无
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Monte Carlo simulations in NP=T and mu VT ensembles of the hydration of Wyoming-type Ca-montmorillonite have shown the interloyer configurations. Ca-montmorillonite may hydrate to one-, two- and three-layer hydrates of d(001) spacing 11.83, 13.73, and 15.60 angstrom at 353 K and 625 bat: At lower temperatures and pressures the spacing increases. Grand canonical simulations show that the one-layer Ca-montmorillonite hydrate of d(001) spacing 12.11 angstrom is stable at 353 K, 300 bat-, -7.21 kcal/mol potential, at a 2.0 km depth of normally compacted sediments. Two- and three-layer hydrates do not form. At 353 K, 625 bat: -5.58 kcal/mol potential, the one-layer hydrate is nearly stable. In the clay interlayer the water molecules are clustered on the midplane, with their protons pointing towards the siloxane surfaces on both sides and on the midplane. The Ca2+ cations are solvated in outer-sphere coordination, separated 2.77 angstrom from the water molecules. In sedimentary basins under normal geotherms, one-layer Ca-montmorillonite is the single hydrate stable at 2 kin depth; under over-compacted sediments at 2.7 kin depth it becomes unstable.
引用
收藏
页码:84 / 95
页数:12
相关论文
共 50 条
  • [31] Monte Carlo and molecular dynamics simulations of methane in potassium montmorillonite clay hydrates at elevated pressures and temperatures
    Titiloye, JO
    Skipper, NT
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2005, 282 (02) : 422 - 427
  • [32] Investigation on the effect of metal cation radius on montmorillonite hydration: Combining experiments with molecular dynamics simulation
    Liu, Min
    Guo, Han
    Luo, Jiaqian
    Gui, Xiahui
    Xing, Yaowen
    Cao, Yijun
    SEPARATION AND PURIFICATION TECHNOLOGY, 2025, 353
  • [33] Effect of Layer Charge Density on Hydration Properties of Montmorillonite: Molecular Dynamics Simulation and Experimental Study
    Qiu, Jun
    Li, Guoqing
    Liu, Dongliang
    Jiang, Shan
    Wang, Guifang
    Chen, Ping
    Zhu, Xiangnan
    Yao, Geng
    Liu, Xiaodong
    Lyu, Xianjun
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2019, 20 (16)
  • [34] THE ROLE OF HYDRATION IN THE HYDROLYSIS OF PYROPHOSPHATE - A MONTE-CARLO SIMULATION WITH POLARIZABLE-TYPE INTERACTION POTENTIALS
    STMARTIN, H
    ORTEGABLAKE, I
    LES, A
    ADAMOWICZ, L
    BIOCHIMICA ET BIOPHYSICA ACTA-PROTEIN STRUCTURE AND MOLECULAR ENZYMOLOGY, 1994, 1207 (01): : 12 - 23
  • [35] Molecular relaxation simulations in nonlinear acoustics using direct simulation Monte Carlo
    Danforth-Hanford, Amanda
    O'Connor, Patrick D.
    Long, Lyle N.
    Anderson, James B.
    INNOVATIONS IN NONLINEAR ACOUSTICS, 2006, 838 : 556 - +
  • [36] Inclusion Complexation of Praziquantel and β-Cyclodextrin, Combined Molecular Mechanic and Monte Carlo Simulation
    Mota, Gunar V. S.
    de Oliveira, Carlos Xavier
    Neto, Antonio M. J. C.
    Paranhos Costa, Fabio Luiz
    JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE, 2012, 9 (08) : 1090 - 1095
  • [37] Monte Carlo Simulation Of Initial Stages Of Si (111) Oxidation By O2 Near Critical Conditions
    Gladkikh, Nadezhda A.
    Shwartz, Nataliya L.
    Yanovitskaja, Zoya Sh.
    EDM 2008: INTERNATIONAL WORKSHOP AND TUTORIALS ON ELECTRON DEVICES AND MATERIALS, PROCEEDINGS, 2008, : 8 - +
  • [38] The role of differing probe and target strand lengths in DNA microarrays investigated via Monte Carlo molecular simulation
    Rivard, Brea R.
    Cooper, Sarah J.
    Stubbs, John M.
    CHEMICAL PHYSICS LETTERS, 2018, 693 : 127 - 131
  • [39] Hydration energies of C60 and C70 fullerenes -: A novel Monte Carlo simulation study
    Muthukrishnan, A.
    Sangaranarayanan, Mn.
    CHEMICAL PHYSICS, 2007, 331 (2-3) : 200 - 206
  • [40] Simulating proteins at constant pH:: An approach combining molecular dynamics and Monte Carlo simulation
    Bürgi, R
    Kollman, PA
    van Gunsteren, WF
    PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2002, 47 (04) : 469 - 480