Hydration of Ca-montmorillonite at basin conditions:: A Monte Carlo molecular simulation

被引:0
|
作者
Monsalvo, R
de Pablo, L
Chávez, ML
机构
[1] Univ Nacl Autonoma Mexico, Fac Quim, Mexico City 04510, DF, Mexico
[2] Univ Nacl Autonoma Mexico, Inst Geol, Mexico City 04510, DF, Mexico
来源
REVISTA MEXICANA DE CIENCIAS GEOLOGICAS | 2006年 / 23卷 / 01期
关键词
montmorillonite; Ca-montmorillonite; hydration; simulation; Monte Carlo; stability;
D O I
暂无
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Monte Carlo simulations in NP=T and mu VT ensembles of the hydration of Wyoming-type Ca-montmorillonite have shown the interloyer configurations. Ca-montmorillonite may hydrate to one-, two- and three-layer hydrates of d(001) spacing 11.83, 13.73, and 15.60 angstrom at 353 K and 625 bat: At lower temperatures and pressures the spacing increases. Grand canonical simulations show that the one-layer Ca-montmorillonite hydrate of d(001) spacing 12.11 angstrom is stable at 353 K, 300 bat-, -7.21 kcal/mol potential, at a 2.0 km depth of normally compacted sediments. Two- and three-layer hydrates do not form. At 353 K, 625 bat: -5.58 kcal/mol potential, the one-layer hydrate is nearly stable. In the clay interlayer the water molecules are clustered on the midplane, with their protons pointing towards the siloxane surfaces on both sides and on the midplane. The Ca2+ cations are solvated in outer-sphere coordination, separated 2.77 angstrom from the water molecules. In sedimentary basins under normal geotherms, one-layer Ca-montmorillonite is the single hydrate stable at 2 kin depth; under over-compacted sediments at 2.7 kin depth it becomes unstable.
引用
收藏
页码:84 / 95
页数:12
相关论文
共 50 条
  • [21] Uranyl surface complexes in a mixed-charge montmorillonite: Monte Carlo computer simulation and polarized XAFS results
    Greathouse, JA
    Stellalevinsohn, HR
    Denecke, MA
    Bauer, A
    Pabalan, RT
    CLAYS AND CLAY MINERALS, 2005, 53 (03) : 278 - 286
  • [22] Efficient implementation of periodic boundary conditions in Monte Carlo simulation
    Shakhno, Dzmitry V.
    Shakhno, Aleh V.
    Paulechka, Eugene
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2019, 40 (05) : 734 - 739
  • [23] Molecular dynamics simulation study of benzene adsorption to montmorillonite: Influence of the hydration status
    Liu, Xingwang
    Zhu, Runliang
    Ma, Jianfeng
    Ge, Fei
    Xu, Yin
    Liu, Yun
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2013, 434 : 200 - 206
  • [24] Examination of the growth conditions influence on the planar silicon nanowire morphology by Monte Carlo simulation
    V. Mantsurova, Snezhana
    Shwartz, Nataliya L.
    MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2025, 188
  • [25] Computer simulation of electrodeposition: hybrid of molecular dynamics and Monte Carlo
    Kaneko, Y
    Mikami, T
    Hiwatari, Y
    Ohara, K
    MOLECULAR SIMULATION, 2005, 31 (6-7) : 429 - 433
  • [26] Parallel and distributed computing in problems of supercomputer simulation of molecular liquids by the Monte Carlo method
    Teplukhin, A. V.
    JOURNAL OF STRUCTURAL CHEMISTRY, 2013, 54 (01) : 65 - 74
  • [27] Cassandra: An open source Monte Carlo package for molecular simulation
    Shah, Jindal K.
    Marin-Rimoldi, Eliseo
    Mullen, Ryan Gotchy
    Keene, Brian P.
    Khan, Sandip
    Paluch, Andrew S.
    Rai, Neeraj
    Romanielo, Lucienne L.
    Rosch, Thomas W.
    Yoo, Brian
    Maginn, Edward J.
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2017, 38 (19) : 1727 - 1739
  • [28] Parallel and distributed computing in problems of supercomputer simulation of molecular liquids by the Monte Carlo method
    A. V. Teplukhin
    Journal of Structural Chemistry, 2013, 54 : 65 - 74
  • [29] Molecular Dynamics simulation for PBR pebble tracking simulation via a random walk approach using Monte Carlo simulation
    Lee, Kyoung O.
    Holmes, Thomas W.
    Calderon, Adan F.
    Gardner, Robin P.
    APPLIED RADIATION AND ISOTOPES, 2012, 70 (05) : 827 - 830
  • [30] Monte Carlo molecular simulation predictions for the heat of vaporization of acetone and butyramide
    Martin, MG
    Biddy, MJ
    FLUID PHASE EQUILIBRIA, 2005, 236 (1-2) : 53 - 57