Insight into the interaction between layered lithium-rich oxide and additive-containing electrolyte

被引:82
作者
Tu, Wenqiang [1 ]
Xia, Pan [1 ]
Zheng, Xiongwen [1 ]
Ye, Changchun [1 ]
Xu, Mengqiang [1 ,2 ,3 ]
Li, Weishan [1 ,2 ,3 ]
机构
[1] South China Normal Univ, Sch Chem & Environm, Guangzhou 510006, Guangdong, Peoples R China
[2] South China Normal Univ, Engn Res Ctr MTEES, Minist Educ,Key Lab ETESPG GHEI, Res Ctr BMET Guangdong Prov,Engn Lab OFMHEB Guang, Guangzhou 510006, Guangdong, Peoples R China
[3] South China Normal Univ, Innovat Platform ITBMD Guangzhou Municipal, Guangzhou 510006, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Layered lithium-rich oxide; Active oxygen trapping; Cathode film; Electrolyte additive; LI-ION BATTERIES; MOLECULAR-DYNAMICS SIMULATION; CATHODE MATERIAL; SURFACE MODIFICATION; HIGH-CAPACITY; ELECTROCHEMICAL PERFORMANCE; HIGH-ENERGY; OXIDATIVE DECOMPOSITION; INTERFACIAL STABILITY; PROPYLENE CARBONATE;
D O I
10.1016/j.jpowsour.2016.12.012
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Electrolyte additives have been found to be effective for the cyclic stability improvement of layered lithium-rich oxide (LRO), which is ascribed to the formation of cathode films derived from the preferential oxidation of the electrolyte additives. However, the detailed mechanism on the formation of the cathode film is unclear. This paper uncovers the interaction between LRO and additive-containing electrolyte through theoretical calculations, electrochemical measurements and physical characterizations. A representative LRO, Li1.2Mn0.54Ni0.13Co0.13O2, is synthesized, and an electrolyte, 1 M LiPF6 in EC/DMC (1/2, in volume) using triethyl phosphite (TEP) as additive, is considered. Charge/discharge tests demonstrate that LRO suffers severe capacity fading and TEP can significantly improve the cyclic stability of LRO. Characterizations from SEM and TEM demonstrate that a cathode film exists on the LRO after cycling in the TEP-containing electrolyte. The theoretical calculations suggest that TEP traps the active oxygen and is then oxidized on LRO preferentially compared to the electrolyte, forming the cathode film. The further characterizations from FTIR and GC, confirm that the preferential combination of TEP with active oxygen is beneficial for the suppression of oxygen evolution, and that the resulting cathode film can suppress the electrolyte decomposition and protect LRO from destruction. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:348 / 356
页数:9
相关论文
共 78 条
[1]   Future generations of cathode materials: an automotive industry perspective [J].
Andre, Dave ;
Kim, Sung-Jin ;
Lamp, Peter ;
Lux, Simon Franz ;
Maglia, Filippo ;
Paschos, Odysseas ;
Stiaszny, Barbara .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (13) :6709-6732
[2]   Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2 [J].
Armstrong, A. Robert ;
Holzapfel, Michael ;
Novak, Petr ;
Johnson, Christopher S. ;
Kang, Sun-Ho ;
Thackeray, Michael M. ;
Bruce, Peter G. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (26) :8694-8698
[3]   Hierarchically Assembled 2D Nanoplates and 0D Nanoparticles of Lithium-Rich Layered Lithium Manganates Applicable to Lithium Ion Batteries [J].
Baek, Ja Yeon ;
Ha, Hyung-Wook ;
Kim, In-Young ;
Hwang, Seong-Ju .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (40) :17392-17398
[4]   Improving the electrochemical performance of high voltage spinel cathode at elevated temperature by a novel electrolyte additive [J].
Chen, Jiahui ;
Zhang, Hui ;
Wang, Mingliang ;
Liu, Jianhong ;
Li, Cuihua ;
Zhang, Peixin .
JOURNAL OF POWER SOURCES, 2016, 303 :41-48
[5]   Polyethylene glycol-assisted synthesis of hierarchically porous layered lithium-rich oxide as cathode of lithium ion battery [J].
Chen, Min ;
Xiang, Xingde ;
Chen, Dongrui ;
Liao, Youhao ;
Huang, Qiming ;
Li, Weishan .
JOURNAL OF POWER SOURCES, 2015, 279 :197-204
[6]   High capacity 0.5Li2MnO3•0.5LiNi0.33Co0.33Mn0.33O2 cathode material via a fast co-precipitation method [J].
Chen, Yu ;
Xu, Guofeng ;
Li, Jianling ;
Zhang, Yakun ;
Chen, Zhong ;
Kang, Feiyu .
ELECTROCHIMICA ACTA, 2013, 87 :686-692
[7]   Challenges in the development of advanced Li-ion batteries: a review [J].
Etacheri, Vinodkumar ;
Marom, Rotem ;
Elazari, Ran ;
Salitra, Gregory ;
Aurbach, Doron .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (09) :3243-3262
[8]   Graphene-oxide-coated LiNi0.5Mn1.5O4 as high voltage cathode for lithium ion batteries with high energy density and long cycle life [J].
Fang, Xin ;
Ge, Mingyuan ;
Rong, Jiepeng ;
Zhou, Chongwu .
JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (12) :4083-4088
[9]   Performance improvement of Li-rich layer-structured Li1.2Mn0.54Ni0.13Co0.13O2 by integration with spinel LiNi0.5Mn1.5O4 [J].
Feng, Xin ;
Yang, Zhenzhong ;
Tang, Daichun ;
Kong, Qingyu ;
Gu, Lin ;
Wang, Zhaoxiang ;
Chen, Liquan .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2015, 17 (02) :1257-1264
[10]   Tunable and Robust Phosphite-Derived Surface Film to Protect Lithium-Rich Cathodes in Lithium-Ion Batteries [J].
Han, Jung-Gu ;
Lee, Sung Jun ;
Lee, Jaegi ;
Kim, Jeom-Soo ;
Lee, Kyu Tae ;
Choi, Nam-Soon .
ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (15) :8319-8329