Qubit models of weak continuous measurements: markovian conditional and open-system dynamics

被引:82
作者
Gross, Jonathan A. [1 ,2 ]
Caves, Carlton M. [1 ,2 ]
Milburn, Gerard J. [2 ]
Combes, Joshua [1 ,2 ,3 ,4 ]
机构
[1] Univ New Mexico, Ctr Quantum Informat & Control, Albuquerque, NM 87131 USA
[2] Univ Queensland, Sch Math & Phys, Ctr Engn Quantum Syst, St Lucia, Qld 4072, Australia
[3] Univ Waterloo, Dept Appl Math, Inst Quantum Comp, Waterloo, ON, Canada
[4] Perimeter Inst Theoret Phys, 31 Caroline St N, Waterloo, ON N2L 2Y5, Canada
基金
澳大利亚研究理事会; 美国国家科学基金会;
关键词
open quantum systems; quantum circuits; quantum trajectories; stochastic master equations; quantum filters; qubits; Gaussian noise; CONTINUOUS QUANTUM MEASUREMENT; WAVE-FUNCTION APPROACH; DISSIPATIVE PROCESSES; MASTER-EQUATIONS; TIME; FEEDBACK; NOISE; STATE; SIMULATION; MECHANICS;
D O I
10.1088/2058-9565/aaa39f
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper we approach the theory of continuous measurements and the associated unconditional and conditional (stochastic) master equations from the perspective of quantum information and quantum computing. We do so by showing how the continuous-time evolution of these master equations arises from discretizing in time the interaction between a system and a probe field and by formulating quantum-circuit diagrams for the discretized evolution. We then reformulate this interaction by replacing the probe field with a bath of qubits, one for each discretized time segment, reproducing all of the standard quantum-optical master equations. This provides an economical formulation of the theory, highlighting its fundamental underlying assumptions.
引用
收藏
页数:44
相关论文
共 103 条
[1]   HOW THE RESULT OF A MEASUREMENT OF A COMPONENT OF THE SPIN OF A SPIN-1/2 PARTICLE CAN TURN OUT TO BE 100 [J].
AHARONOV, Y ;
ALBERT, DZ ;
VAIDMAN, L .
PHYSICAL REVIEW LETTERS, 1988, 60 (14) :1351-1354
[2]   Continuous quantum error correction via quantum feedback control [J].
Ahn, C ;
Doherty, AC ;
Landahl, AJ .
PHYSICAL REVIEW A, 2002, 65 (04) :10
[3]   Quantum error correction for continuously detected errors with any number of error channels per qubit [J].
Ahn, C ;
Wiseman, H ;
Jacobs, K .
PHYSICAL REVIEW A, 2004, 70 (02) :024302-1
[4]  
[Anonymous], 1994, THESIS
[5]  
[Anonymous], ARXIVQUANTPH0511221
[6]   From repeated to continuous quantum interactions [J].
Attal, S ;
Pautrat, Y .
ANNALES HENRI POINCARE, 2006, 7 (01) :59-104
[7]   From (n+1)-level atom chains to n-dimensional noises [J].
Attal, S ;
Pautrat, Y .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2005, 41 (03) :391-407
[8]  
Attal S, 2002, SEMIN PROBABILITY, V36, P477
[9]   Stochastic Master Equations in Thermal Environment [J].
Attal, Stephane ;
Pellegrini, Clement .
OPEN SYSTEMS & INFORMATION DYNAMICS, 2010, 17 (04) :389-408
[10]   Discrete Approximation of the Free Fock Space [J].
Attal, Stephane ;
Nechita, Ion .
SEMINAIRE DE PROBABILITES XLIII, 2011, 2006 :379-394