Microstructured snow targets for high energy quasi-monoenergetic proton acceleration

被引:0
作者
Schleifer, E. [1 ]
Nahum, E. [1 ]
Eisenmann, S. [1 ]
Botton, M. [1 ]
Baspaly, A. [1 ]
Pomerantz, I. [1 ]
Abricht, F. [2 ]
Branzel, J. [2 ]
Priebe, G. [2 ]
Steinke, S. [2 ]
Andreev, A. [2 ]
Schnuerer, M. [2 ]
Sander, W. [2 ]
Gordon, D. [3 ]
Sprangle, P. [3 ]
Ledingham, K. W. D. [4 ]
Zigler, A. [1 ]
机构
[1] Hebrew Univ Jerusalem, Racah Inst Phys, IL-91904 Jerusalem, Israel
[2] Max Born Inst, Berlin, Germany
[3] Naval Res Lab, Div Plasma Phys, Washington, DC 20375 USA
[4] Univ Strathclyde, Glasgow G4 0NG, Lanark, Scotland
来源
LASER ACCELERATION OF ELECTRONS, PROTONS, AND IONS II; AND MEDICAL APPLICATIONS OF LASER-GENERATED BEAMS OF PARTICLES II; AND HARNESSING RELATIVISTIC PLASMA WAVES III | 2013年 / 8779卷
关键词
Laser acceleration; Proton beams; Laser beams; High intensity laser; ION-BEAMS; LASER; INTENSE; GENERATION;
D O I
10.1117/12.2019661
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Compact size sources of high energy protons (50-200MeV) are expected to be key technology in a wide range of scientific applications (1-8). One promising approach is the Target Normal Sheath Acceleration (TNSA) scheme (9,10), holding record level of 67MeV protons generated by a peta-Watt laser (11). In general, laser intensity exceeding 10(18) W/cm(2) is required to produce MeV level protons. Another approach is the Break-Out Afterburner (BOA) scheme which is a more efficient acceleration scheme but requires an extremely clean pulse with contrast ratio of above 10(-10). Increasing the energy of the accelerated protons using modest energy laser sources is a very attractive task nowadays. Recently, nano-scale targets were used to accelerate ions (12,13) but no significant enhancement of the accelerated proton energy was measured. Here we report on the generation of up to 20MeV by a modest (5TW) laser system interacting with a microstructured snow target deposited on a Sapphire substrate. This scheme relax also the requirement of high contrast ratio between the pulse and the pre-pulse, where the latter produces the highly structured plasma essential for the interaction process. The plasma near the tip of the snow target is subject to locally enhanced laser intensity with high spatial gradients, and enhanced charge separation is obtained. Electrostatic fields of extremely high intensities are produced, and protons are accelerated to MeV-level energies. PIC simulations of this targets reproduce the experimentally measured energy scaling and predict the generation of 150 MeV protons from laser power of 100TW laser system(18).
引用
收藏
页数:8
相关论文
共 22 条
[1]   Fast ion beams from intense, femtosecond laser irradiated nanostructured surfaces [J].
Bagchi, S. ;
Kiran, P. Prem ;
Bhuyan, M. K. ;
Bose, S. ;
Ayyub, P. ;
Krishnamurthy, M. ;
Kumar, G. R. .
APPLIED PHYSICS B-LASERS AND OPTICS, 2007, 88 (02) :167-173
[2]   Fast ion generation by high-intensity laser irradiation of solid targets and applications [J].
Borghesi, M ;
Fuchs, J ;
Bulanov, SV ;
Mackinnon, AJ ;
Patel, PK ;
Roth, M .
FUSION SCIENCE AND TECHNOLOGY, 2006, 49 (03) :412-439
[3]   Proton beams generated with high-intensity lasers:: Applications to medical isotope production [J].
Fritzler, S ;
Malka, V ;
Grillon, G ;
Rousseau, JP ;
Burgy, F ;
Lefebvre, E ;
d'Humières, E ;
McKenna, P ;
Ledingham, KWD .
APPLIED PHYSICS LETTERS, 2003, 83 (15) :3039-3041
[4]   Laser acceleration of low emittance, high energy ions and applications [J].
Fuchs, Julien ;
Audebert, Patrick ;
Borghesi, Marco ;
Pepin, Henri ;
Willi, Oswald .
COMPTES RENDUS PHYSIQUE, 2009, 10 (2-3) :176-187
[5]  
Gaillard S. A., 2009, P APS 51 ANN M APS D
[6]  
Gordon DF, 2000, IEEE T PLASMA SCI, V28, P1224, DOI 10.1109/27.893300
[7]   Electron, photon, and ion beams from the relativistic interaction of Petawatt laser pulses with solid targets [J].
Hatchett, SP ;
Brown, CG ;
Cowan, TE ;
Henry, EA ;
Johnson, JS ;
Key, MH ;
Koch, JA ;
Langdon, AB ;
Lasinski, BF ;
Lee, RW ;
Mackinnon, AJ ;
Pennington, DM ;
Perry, MD ;
Phillips, TW ;
Roth, M ;
Sangster, TC ;
Singh, MS ;
Snavely, RA ;
Stoyer, MA ;
Wilks, SC ;
Yasuike, K .
PHYSICS OF PLASMAS, 2000, 7 (05) :2076-2082
[8]   Laser acceleration of quasi-monoenergetic MeV ion beams [J].
Hegelich, BM ;
Albright, BJ ;
Cobble, J ;
Flippo, K ;
Letzring, S ;
Paffett, M ;
Ruhl, H ;
Schreiber, J ;
Schulze, RK ;
Fernández, JC .
NATURE, 2006, 439 (7075) :441-444
[9]  
LARSON JT, 1991, RADIATIVE PROPERTIES
[10]  
Ledingham K, 2006, NAT PHYS, V2, P11, DOI 10.1038/nphys206