Hecke algebras, modular categories and 3-manifolds quantum invariants

被引:42
作者
Blanchet, C [1 ]
机构
[1] Univ Nantes, UMR 6629, F-44322 Nantes 3, France
关键词
D O I
10.1016/S0040-9383(98)00066-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct modular categories from Hecke algebras at roots of unity. For a special choice of the framing parameter, we recover the Reshetikhin-Turaev invariants of closed 3-manifolds constructed from the quantum groups U(q)sl(N) by Reshetikhin-Turaev and Turaev-Wenzl, and from skein theory by Yokota. The possibility of such a construction was suggested by Turaev, as a consequence of Schur-Weil duality. We then discuss the choice of the framing parameter. This leads, for any rank N and level K, to a modular category (H) over tilde(N,K) and a reduced invariant <(tau)over tilde>(N,K). If N and K are coprime, then this invariant coincides with the known invariant tau(PSU(N)) at level K. If gcd(N, K) = d > 1, then we show that the reduced invariant admits spin or cohomological refinements, with a nice decomposition formula which extends a theorem of H. Murakami. (C) 1999 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:193 / 223
页数:31
相关论文
共 41 条
[1]  
Aiston A.K., 1996, THESIS U LIVERPOOL
[2]   Idempotents of Hecke algebras of type A. [J].
Aiston, AK ;
Morton, HR .
JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 1998, 7 (04) :463-487
[3]   TENSOR-PRODUCTS OF QUANTIZED TILTING MODULES [J].
ANDERSEN, HH .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 149 (01) :149-159
[4]   Topological quantum field theories derived from the Kauffman bracket [J].
Blanchet, C ;
Habegger, N ;
Masbaum, G ;
Vogel, P .
TOPOLOGY, 1995, 34 (04) :883-927
[5]   INVARIANTS ON 3-MANIFOLDS WITH SPIN STRUCTURE [J].
BLANCHET, C .
COMMENTARII MATHEMATICI HELVETICI, 1992, 67 (03) :406-427
[6]  
BLANCHET C, 1998, BANACH CTR PUBLICATI, V42, P11
[7]  
BOURBAKI N, 1982, GROUPES ALGEBRES LIE
[8]  
BRUGUIERES A, 1998, TRESSES STRUCTURE EN
[9]  
BRUGUIERES A, 1998, CATEGORIES PREMODULA
[10]  
DIPPER R, 1987, P LOND MATH SOC, V54, P57