Cayley Cages

被引:4
作者
Exoo, Geoffrey [1 ]
Jajcay, Robert [1 ]
Siran, Jozef [2 ]
机构
[1] Indiana State Univ, Dept Math & Comp Sci, Terre Haute, IN 47809 USA
[2] Slovak Univ Technol Bratislava, Dept Math, SvF, Bratislava 81368, Slovakia
关键词
Cage; Cayley graph; Girth; GRAPHS;
D O I
10.1007/s10801-012-0400-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A (k,g)-Cayley cage is a k-regular Cayley graph of girth g and smallest possible order. We present an explicit construction of (k,g)-Cayley graphs for all parameters ka parts per thousand yen2 and ga parts per thousand yen3 and generalize this construction to show that many well-known small k-regular graphs of girth g can be constructed in this way. We also establish connections between this construction and topological graph theory, and address the question of the order of (k,g)-Cayley cages.
引用
收藏
页码:209 / 224
页数:16
相关论文
共 14 条
[1]  
[Anonymous], GRADUATE TEXTS MATH
[2]  
Biggs N., 1998, ELECTRON J COMB, V5
[3]   GIRTH AND RESIDUAL FINITENESS [J].
BIGGS, NL .
COMBINATORICA, 1988, 8 (04) :307-312
[4]  
BOBEN M, GEN CAGES UNPUB
[5]  
Erdos Paul, 1963, Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg Math.-Natur. Reihe, V12, P251
[6]  
EXOO G, 2008, ELECTRON J COMB, V15, pDS16
[7]   EVERY CONNECTED REGULAR GRAPH OF EVEN DEGREE IS A SCHREIER COSET GRAPH [J].
GROSS, JL .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1977, 22 (03) :227-232
[8]  
Gross Jonathan L., 1987, Topological Graph Theory
[9]  
JAJCAY R, SMALL VERTEX T UNPUB
[10]  
LOZ E, SMALL VERTE IN PRESS